The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158187 a(n) = 10*n^2 + 1. 5
 1, 11, 41, 91, 161, 251, 361, 491, 641, 811, 1001, 1211, 1441, 1691, 1961, 2251, 2561, 2891, 3241, 3611, 4001, 4411, 4841, 5291, 5761, 6251, 6761, 7291, 7841, 8411, 9001, 9611, 10241, 10891, 11561, 12251, 12961, 13691, 14441, 15211, 16001, 16811, 17641 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Sequence found by reading the segment (1, 11) together with the line from 11, in the direction 11, 41, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 10 2011 The identity (10n^2 + 1)^2 - (25n^2 + 5)*(2n)^2 = 1 can be written as a(n)^2 - A158445(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Jan 03 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = A033583(n) + 1. For n > 0: a(n) = A010010(n)/2. From Vincenzo Librandi, Jan 03 2012: (Start) G.f: x*(11 + 8*x + x^2)/(1-x)^3. a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End) From Amiram Eldar, Jul 15 2020: (Start) Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(10))*coth(Pi/sqrt(10)))/2. Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(10))*csch(Pi/sqrt(10)))/2. (End) From Amiram Eldar, Feb 05 2021: (Start) Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(10))*sinh(Pi/sqrt(5)). Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(10))*csch(Pi/sqrt(10)). (End) E.g.f.: exp(x)*(1 + 10*x + 10*x^2). - Stefano Spezia, Feb 05 2021 MATHEMATICA Table[10*n^2+1, {n, 0, 50}] (* Vincenzo Librandi, Jan 03 2012 *) PROG (PARI) a(n)=10*n^2+1 \\ Charles R Greathouse IV, Oct 16 2015 CROSSREFS Cf. A158445, A005843. - Vincenzo Librandi, Mar 19 2009 Sequence in context: A360154 A217624 A097991 * A239462 A065145 A030685 Adjacent sequences: A158184 A158185 A158186 * A158188 A158189 A158190 KEYWORD nonn,easy AUTHOR Reinhard Zumkeller, Mar 13 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 17:54 EDT 2024. Contains 375073 sequences. (Running on oeis4.)