|
|
A158186
|
|
a(n) = 10*n^2 - 7*n + 1.
|
|
3
|
|
|
1, 4, 27, 70, 133, 216, 319, 442, 585, 748, 931, 1134, 1357, 1600, 1863, 2146, 2449, 2772, 3115, 3478, 3861, 4264, 4687, 5130, 5593, 6076, 6579, 7102, 7645, 8208, 8791, 9394, 10017, 10660, 11323, 12006, 12709, 13432, 14175, 14938, 15721, 16524, 17347
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Sequence found by reading the segment (1, 4) together with the line (one of the diagonal axes) from 4, in the direction 4, 27, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 10 2011
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (2*n-1)*(5*n-1).
Sum_{n>=0} 1/a(n) = 1 + (2*sqrt(1+2/sqrt(5))*Pi - 2*sqrt(5)*log(phi) - 5*log(5) + 8*log(2))/12, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 22 2022
|
|
MATHEMATICA
|
Table[10n^2-7n+1, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 4, 27}, 50] (* Harvey P. Dale, Apr 06 2020 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|