login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227866
Derived from von Mangoldt matrix sequence.
0
1, 1, 4, 27, 64, 3125, 288, 823543, 147456, 4251528, 460800, 285311670611, 111974400, 302875106592253, 3251404800, 13436928000, 106542032486400, 827240261886336764177, 1053455155200000, 1978419655660313589123979, 102395841085440000
OFFSET
0,3
COMMENTS
Since the logarithm of n is given by the limit of Zeta(s)*Sum_{k=1..n} ((1 - (If k mod n = 0 then n else 0))/k^(s - 1)) as s -> 1, it is natural to ask what the von Mangoldt function variant might look like starting from the table A191898, instead of table A167407. - Mats Granvik, Nov 11 2013
FORMULA
a(prime(n)) = A000312(prime(n)).
MATHEMATICA
Clear[nn, t, n, k, i, s]; nn = 20; t[n_, 1] = 1; t[1, k_] = 1; t[n_, k_] := t[n, k] = If[n >= k, -Sum[t[n - i, k], {i, 1, k - 1}], -Sum[t[k - i, n], {i, 1, n - 1}]]; Exp[Table[Limit[Zeta[s]*Sum[If[n == 1, 0, t[n, k]]/k^(s - 1), {k, 1, n}], s -> 1], {n, 0, nn}]]*(Range[nn + 1] - 1)!
CROSSREFS
KEYWORD
nonn
AUTHOR
Mats Granvik, Nov 02 2013
STATUS
approved