OFFSET
0,3
COMMENTS
Since the logarithm of n is given by the limit of Zeta(s)*Sum_{k=1..n} ((1 - (If k mod n = 0 then n else 0))/k^(s - 1)) as s -> 1, it is natural to ask what the von Mangoldt function variant might look like starting from the table A191898, instead of table A167407. - Mats Granvik, Nov 11 2013
FORMULA
a(prime(n)) = A000312(prime(n)).
MATHEMATICA
Clear[nn, t, n, k, i, s]; nn = 20; t[n_, 1] = 1; t[1, k_] = 1; t[n_, k_] := t[n, k] = If[n >= k, -Sum[t[n - i, k], {i, 1, k - 1}], -Sum[t[k - i, n], {i, 1, n - 1}]]; Exp[Table[Limit[Zeta[s]*Sum[If[n == 1, 0, t[n, k]]/k^(s - 1), {k, 1, n}], s -> 1], {n, 0, nn}]]*(Range[nn + 1] - 1)!
CROSSREFS
KEYWORD
nonn
AUTHOR
Mats Granvik, Nov 02 2013
STATUS
approved