login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180576
Wiener index of the n-web graph.
1
4, 27, 69, 148, 255, 417, 616, 888, 1206, 1615, 2079, 2652, 3289, 4053, 4890, 5872, 6936, 8163, 9481, 10980, 12579, 14377, 16284, 18408, 20650, 23127, 25731, 28588, 31581, 34845, 38254, 41952, 45804, 49963, 54285, 58932, 63751, 68913, 74256, 79960
OFFSET
1,1
COMMENTS
The n-web graph is the stacked prism graph C_n X P_3 with the edges of the outer cycle removed.
Equivalently, the n-web graph is obtained by attaching a pendant edge to each node of the outer cycle of the circular ladder (prism) C_n X P_2.
The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
a(n) = sum(A180575(n,k), k>=1).
Sequence extended to a(1)-a(2) using the formula/recurrence. - Eric W. Weisstein, Sep 08 2017
LINKS
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
Eric Weisstein's World of Mathematics, Web Graph
Eric Weisstein's World of Mathematics, Wiener Index
FORMULA
a(2n) = n*(9*n^2+20*n-2); a(2n+1) = (2*n+1)*(9*n^2+29*n+8)/2.
G.f.: -x^3*(27*x^5-50*x^4-35*x^3+110*x^2-10*x-69)/((x-1)^4*(x+1)^2). - Colin Barker, Oct 31 2012
a(n) = n*(2*n*(9*n+40)+9*(-1)^n-25)/16. - Bruno Berselli, Oct 31 2012
MAPLE
a := proc (n) if `mod`(n, 2) = 1 then (1/8)*n*(9*n^2+40*n-17) else (1/8)*n*(9*n^2+40*n-8) end if end proc: seq(a(n), n = 3 .. 45);
MATHEMATICA
Table[n (-25 + 9 (-1)^n + 2 n (40 + 9 n))/16, {n, 20}] (* Eric W. Weisstein, Sep 08 2017 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {4, 27, 69, 148, 255, 4178}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
CoefficientList[Series[(4 + 19 x + 11 x^2 - x^3 - 6 x^4 + 3761 x^5)/((-1 + x)^4 (1 + x)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
CROSSREFS
Cf. A180575.
Sequence in context: A175701 A227866 A356814 * A158186 A272858 A272818
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Sep 19 2010
EXTENSIONS
a(1)-a(2) from Eric W. Weisstein, Sep 08 2017
STATUS
approved