login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A180577
The Wiener index of the windmill graph D(6,n). The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e., a bouquet of n pieces of K_m graphs).
4
15, 80, 195, 360, 575, 840, 1155, 1520, 1935, 2400, 2915, 3480, 4095, 4760, 5475, 6240, 7055, 7920, 8835, 9800, 10815, 11880, 12995, 14160, 15375, 16640, 17955, 19320, 20735, 22200, 23715, 25280, 26895, 28560, 30275, 32040, 33855, 35720
OFFSET
1,1
COMMENTS
The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
The Wiener polynomial of D(m,n) is (1/2)n(m-1)t[(m-1)(n-1)t+m].
The Wiener index of D(m,n) is (1/2)n(m-1)[(m-1)(2n-1)+1].
For the Wiener indices of D(3,n), D(4,n), and D(5,n) see A033991, A152743, and A028994, respectively.
LINKS
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
Eric Weisstein's World of Mathematics, Windmill Graph.
FORMULA
a(n) = 5n(5n-2).
G.f.: -5*x*(7*x+3)/(x-1)^3. - Colin Barker, Oct 30 2012
MAPLE
seq(5*n*(-2+5*n), n = 1 .. 40);
PROG
(PARI) a(n)=5*n*(5*n-2) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Sep 21 2010
STATUS
approved