OFFSET
1,2
COMMENTS
LINKS
Giuseppe Coppoletta and Giovanni Resta, Table of n, a(n) for n = 1..6058 (terms < 10^18, first 100 terms from G. Coppoletta)
FORMULA
If N is a positive integer and N = Product_{i=1..k} (p_i)^e_i is its prime factorization, then N is in A272858 iff Product_{i=1..k} (1 + p_i) = Product_{i=1..k} (1 + e_i).
For a number with three different prime factors N = p1^e1 * p2^e2 * p3^e3, the defining condition can be expressed as: p1 + p2 + p3 + p1*p2 + p1*p3 + p2*p3 + p1*p2*p3 = e1 + e2 + e3 + e1*e2 + e1*e3 + e2*e3 + e1*e2*e3.
EXAMPLE
92160 is included because 92160 = 2^11 * 3^2 * 5 and (2+1)*(3+1)*(5+1) = (11+1)*(2+1)*(1+1).
MATHEMATICA
ok[n_] := Block[{p, e}, {p, e} = Transpose@ FactorInteger@ n; Times @@ (1+p) == Times @@ (1+e)]; Select[Range[10^6], ok] (* Giovanni Resta, May 08 2016 *)
PROG
(Sage)
def d(n):
v = factor(n)
d1 = prod(1 + w[0] for w in v)
d2 = prod(1 + w[1] for w in v)
return d1 == d2
[k for k in (1..10000) if d(k)]
(PARI) is(n)=my(f=factor(n)); prod(i=1, #f~, f[i, 1]+1)==prod(i=1, #f~, f[i, 2]) \\ Charles R Greathouse IV, Sep 08 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Giuseppe Coppoletta, May 08 2016
STATUS
approved