|
|
A175701
|
|
a(n) = n ^ (phi(n)+1), phi(n) = A000010(n) = Euler totient function.
|
|
1
|
|
|
1, 4, 27, 64, 3125, 216, 823543, 32768, 4782969, 100000, 285311670611, 248832, 302875106592253, 105413504, 38443359375, 68719476736, 827240261886336764177, 612220032, 1978419655660313589123979
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..300
|
|
FORMULA
|
a(n) = n*A062981(n). - R. J. Mathar, Apr 01 2014
|
|
EXAMPLE
|
For n = 6, a(6) = 6 ^ (phi(6)+1) = 6 ^ (A000010(6)+1) = 6 ^ (2+1) = 216.
|
|
MAPLE
|
A175701 := proc(n)
n^(numtheory[phi](n)+1) ;
end proc: # R. J. Mathar, Apr 01 2014
|
|
MATHEMATICA
|
Table[n^(EulerPhi[n]+1), {n, 1, 30}] (* Vincenzo Librandi, Jul 13 2012 *)
|
|
PROG
|
(MAGMA) [n^(EulerPhi(n)+1): n in [1..25]]; // Vincenzo Librandi, Jul 13 2012
(PARI) a(n)=n^(eulerphi(n)+1) \\ Charles R Greathouse IV, Mar 05 2013
|
|
CROSSREFS
|
Sequence in context: A308474 A058067 A294038 * A227866 A180576 A158186
Adjacent sequences: A175698 A175699 A175700 * A175702 A175703 A175704
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jaroslav Krizek, Aug 09 2010
|
|
STATUS
|
approved
|
|
|
|