login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158188
Characteristic polynomials of a binomial modulo two Hadamard transpose general matrix: t(n,m,d) = If[ m <= n, binomial(n, m) mod 2], 0]; M(d)=t(n,m,d).Transpose[t(n,m,d)].
0
1, 1, -1, 1, -2, 1, 1, -5, 5, -1, 1, -6, 10, -6, 1, 1, -9, 25, -25, 9, -1, 1, -12, 48, -78, 48, -12, 1, 1, -19, 102, -228, 228, -102, 19, -1, 1, -20, 121, -330, 456, -330, 121, -20, 1, 1, -23, 176, -628, 1167, -1167, 628, -176, 23, -1, 1, -26, 239, -1062, 2532, -3368
OFFSET
0,5
COMMENTS
Row sums are 1, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, ...
Example matrix:
M(3) = {{1, 0, 1},
{0, 1, 1},
{1, 1, 3}}
The traditional Hadamard self-similar matrix construction is on symbols {1,-1}.
When instead the symbols {0,1} are use you get:
H(2*n) = {{H(n), H(n)},
{H(n), 0 }}
which turns out to be a rotated Sierpinski-Pascal modulo two as an n X n matrix.
Here the Hadamard transpose product of that construction gives a new set of symmetrical polynomials.
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, pp. 44-48.
FORMULA
t(n,m,d) = If[ m <= n, binomial(n, m) mod 2, 0];
M(d) = t(n,m,d).Transpose[t(n,m,d)];
a(n,m) = coefficients(characteristicpolynomial(M(n),x),x).
EXAMPLE
{1},
{1, -1},
{1, -2, 1},
{1, -5, 5, -1},
{1, -6, 10, -6, 1},
{1, -9, 25, -25, 9, -1},
{1, -12, 48, -78, 48, -12, 1},
{1, -19, 102, -228, 228, -102, 19, -1},
{1, -20, 121, -330, 456, -330, 121, -20, 1},
{1, -23, 176, -628, 1167, -1167, 628, -176, 23, -1},
{1, -26, 239, -1062, 2532, -3368, 2532, -1062, 239, -26, 1}
MATHEMATICA
Clear[M, T, d, a, x, a0];
T[n_, m_, d_] := If[ m <= n, Mod[Binomial[n, m], 2], 0];
M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}].Transpose[Table[T[n, m, d], {n, 1, d}, {m, 1, d}]];
a0 = Table[M[d], {d, 1, 10}];
Table[Det[M[d]], {d, 1, 10}];
Table[CharacteristicPolynomial[M[d], x], {d, 1, 10}];
a = Join[{{1}}, Table[CoefficientList[Expand[ CharacteristicPolynomial[M[n], x]], x], {n, 1, 10}]];
Flatten[a]
Join[{1}, Table[Apply[Plus, CoefficientList[Expand[CharacteristicPolynomial[M[n], x]], x]], {n, 1, 10}]];
CROSSREFS
Sequence in context: A058676 A147649 A147644 * A176625 A197342 A197217
KEYWORD
sign,tabl,uned
AUTHOR
STATUS
approved