login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Characteristic polynomials of a binomial modulo two Hadamard transpose general matrix: t(n,m,d) = If[ m <= n, binomial(n, m) mod 2], 0]; M(d)=t(n,m,d).Transpose[t(n,m,d)].
0

%I #8 May 04 2019 07:09:37

%S 1,1,-1,1,-2,1,1,-5,5,-1,1,-6,10,-6,1,1,-9,25,-25,9,-1,1,-12,48,-78,

%T 48,-12,1,1,-19,102,-228,228,-102,19,-1,1,-20,121,-330,456,-330,121,

%U -20,1,1,-23,176,-628,1167,-1167,628,-176,23,-1,1,-26,239,-1062,2532,-3368

%N Characteristic polynomials of a binomial modulo two Hadamard transpose general matrix: t(n,m,d) = If[ m <= n, binomial(n, m) mod 2], 0]; M(d)=t(n,m,d).Transpose[t(n,m,d)].

%C Row sums are 1, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, ...

%C Example matrix:

%C M(3) = {{1, 0, 1},

%C {0, 1, 1},

%C {1, 1, 3}}

%C The traditional Hadamard self-similar matrix construction is on symbols {1,-1}.

%C When instead the symbols {0,1} are use you get:

%C H(2*n) = {{H(n), H(n)},

%C {H(n), 0 }}

%C which turns out to be a rotated Sierpinski-Pascal modulo two as an n X n matrix.

%C Here the Hadamard transpose product of that construction gives a new set of symmetrical polynomials.

%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, pp. 44-48.

%F t(n,m,d) = If[ m <= n, binomial(n, m) mod 2, 0];

%F M(d) = t(n,m,d).Transpose[t(n,m,d)];

%F a(n,m) = coefficients(characteristicpolynomial(M(n),x),x).

%e {1},

%e {1, -1},

%e {1, -2, 1},

%e {1, -5, 5, -1},

%e {1, -6, 10, -6, 1},

%e {1, -9, 25, -25, 9, -1},

%e {1, -12, 48, -78, 48, -12, 1},

%e {1, -19, 102, -228, 228, -102, 19, -1},

%e {1, -20, 121, -330, 456, -330, 121, -20, 1},

%e {1, -23, 176, -628, 1167, -1167, 628, -176, 23, -1},

%e {1, -26, 239, -1062, 2532, -3368, 2532, -1062, 239, -26, 1}

%t Clear[M, T, d, a, x, a0];

%t T[n_, m_, d_] := If[ m <= n, Mod[Binomial[n, m], 2], 0];

%t M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}].Transpose[Table[T[n, m, d], {n, 1, d}, {m, 1, d}]];

%t a0 = Table[M[d], {d, 1, 10}];

%t Table[Det[M[d]], {d, 1, 10}];

%t Table[CharacteristicPolynomial[M[d], x], {d, 1, 10}];

%t a = Join[{{1}}, Table[CoefficientList[Expand[ CharacteristicPolynomial[M[n], x]], x], {n, 1, 10}]];

%t Flatten[a]

%t Join[{1}, Table[Apply[Plus, CoefficientList[Expand[CharacteristicPolynomial[M[n], x]], x]], {n, 1, 10}]];

%K sign,tabl,uned

%O 0,5

%A _Roger L. Bagula_ and _Gary W. Adamson_, Mar 13 2009