login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058676
McKay-Thompson series of class 42b for Monster.
1
1, 2, 1, 1, 5, 4, 7, 10, 12, 12, 22, 22, 29, 41, 46, 55, 73, 81, 102, 127, 149, 175, 223, 246, 299, 365, 417, 488, 594, 671, 785, 934, 1069, 1232, 1465, 1653, 1918, 2230, 2536, 2903, 3379, 3814, 4372, 5031, 5679, 6456, 7423, 8336, 9477, 10798, 12150, 13701, 15595, 17463, 19696, 22273
OFFSET
-1,2
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of A + q/A, where A = q^(1/2)*(eta(q^3)*eta(q^7)/(eta(q)* eta(q^21))), in powers of q. - G. C. Greubel, Jun 26 2018
a(n) ~ exp(2*Pi*sqrt(2*n/21)) / (2^(3/4) * 21^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 26 2018
EXAMPLE
T42b = 1/q + 2*q + q^3 + q^5 + 5*q^7 + 4*q^9 + 7*q^11 + 10*q^13 + 12*q^15 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; A := q^(1/2)*(eta[q^3]*eta[q^7]/( eta[q]*eta[q^21])); a:= CoefficientList[Series[A + q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 26 2018 *)
PROG
(PARI) q='q+O('q^50); A = (eta(q^3)*eta(q^7)/(eta(q)* eta(q^21))); Vec(A+q/A) \\ G. C. Greubel, Jun 26 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
Terms a(12) onward added by G. C. Greubel, Jun 26 2018
STATUS
approved