login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176625
T(n,k) = 1 + 3*k*(k - n), triangle read by rows (n >= 0, 0 <= k <= n).
2
1, 1, 1, 1, -2, 1, 1, -5, -5, 1, 1, -8, -11, -8, 1, 1, -11, -17, -17, -11, 1, 1, -14, -23, -26, -23, -14, 1, 1, -17, -29, -35, -35, -29, -17, 1, 1, -20, -35, -44, -47, -44, -35, -20, 1, 1, -23, -41, -53, -59, -59, -53, -41, -23, 1, 1, -26, -47, -62, -71, -74, -71, -62, -47
OFFSET
0,5
FORMULA
T(n,k) = 1 - A000326(n) + A000326(k) + A000326(n-k).
EXAMPLE
Triangle begins:
1;
1, 1;
1, -2, 1:
1, -5, -5, 1;
1, -8, -11, -8, 1;
1, -11, -17, -17, -11, 1;
1, -14, -23, -26, -23, -14, 1;
1, -17, -29, -35, -35, -29, -17, 1;
1, -20, -35, -44, -47, -44, -35, -20, 1;
1, -23, -41, -53, -59, -59, -53, -41, -23, 1;
1, -26, -47, -62, -71, -74, -71, -62, -47, -26, 1;
...
MATHEMATICA
a[n_] = n*(3*n - 1)/2; (* A000326 *)
t[n_, m_] = 1 - a[n] + a[m] + a[n - m];
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
PROG
(Maxima) create_list(1 + 3*k*(k - n), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Nov 25 2018 */
(Magma) / * As triangle */ [[1 + 3*k*(k - n): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Nov 26 2018
KEYWORD
sign,tabl,easy
AUTHOR
Roger L. Bagula, Apr 22 2010
EXTENSIONS
Edited and name clarified by Franck Maminirina Ramaharo, Nov 25 2018
STATUS
approved