OFFSET
0,13
COMMENTS
Row sums are {1, 2, 2, 4, 6, 12, 23, 46, 90, 174, 330,...} (see A188538).
More generally, we can define for a sequence with a(n)=0 : add one;
t(n,m)=1+a(n)-a(m)-a(n-m)
or a(0)=1: add two:
t(n,m)=2+a(n)-a(m)-a(n-m).
FORMULA
t(n,m)=1 + Fibonacci[n] - Fibonacci[m] - Fibonacci[n - m].
EXAMPLE
{1},
{1, 1},
{1, 0, 1},
{1, 1, 1, 1},
{1, 1, 2, 1, 1},
{1, 2, 3, 3, 2, 1},
{1, 3, 5, 5, 5, 3, 1},
{1, 5, 8, 9, 9, 8, 5, 1},
{1, 8, 13, 15, 16, 15, 13, 8, 1},
{1, 13, 21, 25, 27, 27, 25, 21, 13, 1},
{1, 21, 34, 41, 45, 46, 45, 41, 34, 21, 1}
MATHEMATICA
t[n_, m_] = 1 + Fibonacci[n] - Fibonacci[m] - Fibonacci[n - m];
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 03 2009
EXTENSIONS
Edited by N. J. A. Sloane, Apr 03 2011
STATUS
approved