The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156068 The slowest increasing sequence such that there is no common digit between any two integers from {a(n), a(n-1), a(n-2), c=a(n)+a(n-1)+a(n-2)}. 0
 1, 2, 3, 4, 5, 7, 8, 9, 10, 25, 33, 40, 55, 73, 81, 90, 262, 433, 880, 959, 2272, 3380, 5459, 7272 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS For this particular case a(1..2)=1, 2 the sequence is complete with the last term a(24)=7272. LINKS Table of n, a(n) for n=1..24. EXAMPLE {a(n-2), a(n-1),a(n),c=a(n)+a(n-1)+a(n-2)} {1,2,3,6} {2,3,4,9} {3,4,5,12} {4,5,7,16} {5,7,8,20} {7,8,9,24} {8,9,10,27} {9,10,25,44} {10,25,33,68} {25,33,40,98} {33,40,55,128} {40,55,73,168} {55,73,81,209} {73,81,90,244} {81,90,262,433} {90,262,433,785} {262,433,880,1575} {433,880,959,2272} {880,959,2272,4111} {959,2272,3380,6611} {2272,3380,5459,11111} {3380,5459,7272,16111}. MATHEMATICA ss={1, 2}; a=1; b=2; ia=IntegerDigits[a]; ib=IntegerDigits[b]; Do[ic=IntegerDigits[c]; isu=IntegerDigits[su=a+b+c]; If[Intersection[ic, ia]==Intersection[ic, ib]==Intersection[ic, isu]==Intersection[ia, isu]==Intersection[ib, isu]=={}, Print[{a, b, c, su}]; AppendTo[ss, c]; a=b; b=c; ia=ib; ib=ic], {c, 3, 100000}]; ss CROSSREFS Cf. A166461. Sequence in context: A271317 A330220 A039169 * A039263 A344881 A039203 Adjacent sequences: A156065 A156066 A156067 * A156069 A156070 A156071 KEYWORD base,fini,full,nonn AUTHOR Zak Seidov, Oct 23 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 07:03 EST 2023. Contains 367429 sequences. (Running on oeis4.)