Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #3 Nov 16 2017 15:52:24
%S 1,2,3,4,5,7,8,9,10,25,33,40,55,73,81,90,262,433,880,959,2272,3380,
%T 5459,7272
%N The slowest increasing sequence such that there is no common digit between any two integers from {a(n), a(n-1), a(n-2), c=a(n)+a(n-1)+a(n-2)}.
%C For this particular case a(1..2)=1, 2 the sequence is complete with the last term a(24)=7272.
%e {a(n-2), a(n-1),a(n),c=a(n)+a(n-1)+a(n-2)}
%e {1,2,3,6}
%e {2,3,4,9}
%e {3,4,5,12}
%e {4,5,7,16}
%e {5,7,8,20}
%e {7,8,9,24}
%e {8,9,10,27}
%e {9,10,25,44}
%e {10,25,33,68}
%e {25,33,40,98}
%e {33,40,55,128}
%e {40,55,73,168}
%e {55,73,81,209}
%e {73,81,90,244}
%e {81,90,262,433}
%e {90,262,433,785}
%e {262,433,880,1575}
%e {433,880,959,2272}
%e {880,959,2272,4111}
%e {959,2272,3380,6611}
%e {2272,3380,5459,11111}
%e {3380,5459,7272,16111}.
%t ss={1,2};a=1;b=2;ia=IntegerDigits[a];ib=IntegerDigits[b];Do[ic=IntegerDigits[c];isu=IntegerDigits[su=a+b+c];If[Intersection[ic,ia]==Intersection[ic,ib]==Intersection[ic,isu]==Intersection[ia,isu]==Intersection[ib,isu]=={},Print[{a,b,c,su}];AppendTo[ss,c];a=b;b=c;ia=ib;ib=ic],{c,3,100000}];ss
%Y Cf. A166461.
%K base,fini,full,nonn
%O 1,2
%A _Zak Seidov_, Oct 23 2009