login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156067
a(0)=1. a(n)= -2^(n-1)-3*(-1)^n, n>1.
2
1, 2, -5, -1, -11, -13, -35, -61, -131, -253, -515, -1021, -2051, -4093, -8195, -16381, -32771, -65533, -131075, -262141, -524291, -1048573, -2097155, -4194301, -8388611, -16777213, -33554435, -67108861, -134217731, -268435453, -536870915, -1073741821, -2147483651
OFFSET
0,2
COMMENTS
The main diagonal of the array of A153130 and its successive differences.
A154589 is the second upper diagonal of the array.
FORMULA
a(n)= +a(n-1) +2*a(n-2), n>2.
G.f.: x*(-2+7*x) / ( (1+x)*(2*x-1) ).
a(n) == A153130(n) (mod 9).
a(n+1)-2*a(n) = (-1)^n*9, n>0.
a(n) = A154589(n)-3*(-1)^n.
a(n)+a(n+3) = -A005010(n-1) = -9*A131577(n).
a(2*n)+a(2*n+1) = -3*2^(2n-1) = -A002023(n-2).
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 2}, {2, -5}, 40]] (* Harvey P. Dale, Dec 11 2011 *)
CROSSREFS
Sequence in context: A089618 A207629 A207614 * A352577 A263487 A101920
KEYWORD
easy,sign
AUTHOR
Paul Curtz, Feb 03 2009
STATUS
approved