login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089618
Continued fraction elements constructed out of a van der Corput discrepancy sequence. Interpreted as such, it is the simple continued fraction of 0.461070495956719519354149869336699687678...
1
0, 2, 5, 1, 11, 1, 3, 1, 22, 2, 4, 1, 7, 1, 2, 1, 45, 2, 4, 1, 8, 1, 3, 1, 14, 1, 3, 1, 6, 1, 2, 1, 91, 2, 4, 1, 9, 1, 3, 1, 17, 2, 3, 1, 6, 1, 2, 1, 30, 2, 4, 1, 7, 1, 2, 1, 12, 1, 3, 1, 5, 1, 2, 1, 184, 2, 5, 1, 10, 1, 3, 1, 20, 2, 4, 1, 6, 1, 2, 1, 36, 2, 4
OFFSET
0,2
COMMENTS
The authors of On the Khintchine Constant posit that the geometric mean of the sequence (interpreted as a simple continued fraction expansion) is Khinchin's constant "on the idea that the discrepancy sequence is in a certain sense equidistributed."
That conjecture has been proven by Wieting. Moreover, the r-th power mean of the sequence (except a(0)=0, of course) also converges to the corresponding constant K_r for any real r<1. - Andrey Zabolotskiy, Feb 20 2017
LINKS
D. Bailey, J. Borwein, & R. Crandall, On the Khintchine constant, Mathematics of Computation 66:217 (January 1997), pp. 417-431.
T. Wieting, A Khinchin Sequence, Proc. Amer. Math. Soc., 136 (2008), 815-824.
FORMULA
a(n) = integer part of 1/(2^b(n)-1) where b(n) = digit-reversal of binary of (positive integer) n, preceded by a decimal point and converted (from base 2) to base 10; initial term, a(0), is defined as 0.
a(n) = floor(1/(2^(A030101(n)/A062383(n))-1)) for n>0. - Andrey Zabolotskiy, Feb 20 2017
EXAMPLE
40 is 101000 in base 2, so b(40) = 0.078125 (the equivalent of binary 0.000101), 1/(2^0.078125-1) is approximately 17.97 and a(40) is the integer part of this: 17.
MATHEMATICA
a[n_] := (m = IntegerDigits[n, 2]; l = Length[m]; s = "2^^."; Do[s = s <> ToString[m[[i]]], {i, l, 1, -1}]; Floor[1/(2^ToExpression[s]-1)]); Prepend[Table[a[i], {i, 1, 120}], 0]
a[n_] := If[n==0, 0, Floor[1 / (2^FromDigits[{Reverse[IntegerDigits[n, 2]], 0}, 2] - 1)]]; (* Andrey Zabolotskiy, Feb 20 2017 *)
CROSSREFS
KEYWORD
cofr,nonn
AUTHOR
Hans Havermann, Jan 03 2004
STATUS
approved