

A131577


Zero followed by powers of 2 (cf. A000079).


68



0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

A000079 is the main entry for this sequence.
Binomial transform of A000035.
Essentially the same as A034008 and A000079.
a(n) = a(n1)th even natural numbers (A005846) for n > 1.  Jaroslav Krizek, Apr 25 2009
Where record values greater than 1 occur in A083662: A000045(n)=A083662(a(n)).  Reinhard Zumkeller, Sep 26 2009
Number of compositions of natural number n into parts >0.
The signed sequence 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,... is the Lucas U(2,0) sequence.  R. J. Mathar, Jan 08 2013
In computer programming, these are the only unsigned numbers such that k&(k1)=0, where & is the bitwise AND operator and numbers are expressed in binary.  Stanislav Sykora, Nov 29 2013
Also the 0additive sequence: a(n) is the smallest number larger than a(n1) which is not the sum of any subset of earlier terms, with initial values {0, 1, 2}.  Robert G. Wilson v, Jul 12 2014
Also the smallest nonnegative superincreasing sequence: each term is larger than the sum of all preceding terms. Indeed, an equivalent definition is a(0)=0, a(n+1)=1+sum_{k=0..n} a(k).  M. F. Hasler, Jan 13 2015


REFERENCES

Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 2428, Winter 1997.
JT Rowell, Solution Sequences for the Keyboard Problem and its Generalizations, Journal of Integer Sequences, 18 (2105), #15.10.7.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Adi Dani, Compositions of natural numbers over arithmetic progressions
Wikipedia, Lucas sequence
Index entries for linear recurrences with constant coefficients, signature (2).
Index entries for Lucas sequences


FORMULA

Floor(2^(k1)) with k=1..n.  Robert G. Wilson v
G.f.: x/(12*x); a(n) = (2^n0^n)/2.  Paul Barry, Jan 05 2009
E.g.f.: exp(x)*sinh(x).  Geoffrey Critzer, Oct 28 2012
E.g.f.: x/T(0) where T(k) = 4*k+1  x/(1 + x/(4*k+3  x/(1 + x/T(k+1) ))); (continued fraction).  Sergei N. Gladkovskii, Mar 17 2013


MAPLE

A131577 := proc(n)
if n =0 then
0;
else
2^(n1) ;
end if;
end proc: # R. J. Mathar, Jul 22 2012


MATHEMATICA

Floor[2^Range[1, 33]] (* Robert G. Wilson v *)
Join[{0}, 2^Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)


PROG

(MAGMA) [(2^n0^n)/2: n in [0..50]]; // Vincenzo Librandi, Aug 10 2011
(C) int is (unsigned long n) { return !(n & (n1)); } /* Charles R Greathouse IV, Sep 15 2012 */
(PARI) a(n)=1<<n \\ Charles R Greathouse IV, Sep 15 2012
(Haskell)
a131577 = (`div` 2) . a000079
a131577_list = 0 : a000079_list  Reinhard Zumkeller, Dec 09 2012


CROSSREFS

Cf. A000079, A003945, A042950, A020406, A046045, A011782.
Sequence in context: A120617 * A155559 A171449 A122803 A274867 A274866
Adjacent sequences: A131574 A131575 A131576 * A131578 A131579 A131580


KEYWORD

nonn,easy


AUTHOR

Paul Curtz, Aug 29 2007, Dec 06 2007


EXTENSIONS

More terms from Robert G. Wilson v, Sep 02 2007
Edited by N. J. A. Sloane, Sep 13 2007
Edited by M. F. Hasler, Jan 13 2015


STATUS

approved



