

A083662


a(n)=a([n/2])+a([n/4]), n>0. a(0)=1.


8



1, 2, 3, 3, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

A000045(n+2)=a(A131577(n))and A000045(m+2)<a(m) for m < A131577(n). [From Reinhard Zumkeller, Sep 26 2009]


LINKS

R. Zumkeller, Table of n, a(n) for n = 0..10000 [From Reinhard Zumkeller, Sep 26 2009]


FORMULA

For n>0, a(n) = F([log(n)/log(2)]+3) where F(k) denotes the kth Fibonacci number. For n>=3, F(n) appears 2^(n3) times. More generally, if p is an integer>1 and a(n)=a([n/p])+a([n/p^2]), n>0, a(0)=1, then for n>0, a(n) = F([log(n)/log(p)]+3).


PROG

(PARI) a(n)=if(n<1, n==0, a(n\2)+a(n\4))


CROSSREFS

Cf. A088468.
A007731, A165704, A165706. [From Reinhard Zumkeller, Sep 26 2009]
Sequence in context: A154404 A225577 A265531 * A256405 A130149 A053046
Adjacent sequences: A083659 A083660 A083661 * A083663 A083664 A083665


KEYWORD

nonn


AUTHOR

Benoit Cloitre, Oct 05 2003


STATUS

approved



