login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034008 a(n) = floor(2^|n-1|/2). Or: 1, 0, followed by powers of 2. 16
1, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Powers of 2 with additional first two terms.

Essentially the same as A131577 (and A000079).

[(-1)^n*a(n)] = [1,0,1,-2,4,-8,16,-32,...] is the inverse binomial transform of A008619 = [1,1,2,2,3,3,4,4,5,5,...]. - Philippe Deléham, Nov 15 2009

Number of compositions (ordered partitions) of n into an even number of parts. - Geoffrey Critzer, Mar 28 2010

Number of compositions of n into an even number of even parts.

Number of compositions of n into parts k>=2 where there are k-1 sorts of part k. - Joerg Arndt, Sep 30 2012

Taking n-th differences of this sequence reproduces the same sequence except for a(1)=n%2 (parity of n) and a(0)=(-1)^a(1)*floor(n/2+1). - M. F. Hasler, Jan 13 2015

REFERENCES

Richard P. Stanley, Enumerative Combinatorics, Vol. I, Page 45

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.

FORMULA

a(n) = 2^(n-2), n >= 2; a(0)=1, a(1)=0.

G.f.: (1-x)^2/(1-2*x).

G.f. 1/( 1 - sum(k>=1, (k-1)*x^k ) ). - Joerg Arndt, Sep 30 2012

G.f.: x*G(0), where G(k)= 1 + 1/(1 - (1-x)/(1 + x*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 01 2013

a(n+1)=A131577(n) and a(n+2)=A000079(n) for all n >= 0. - M. F. Hasler, Jan 13 2015

MAPLE

A034008:=n->2^(n-2): 1, 0, seq(A034008(n), n=2..50); # Wesley Ivan Hurt, Apr 12 2017

MATHEMATICA

a = x/(1 - x); CoefficientList[Series[1/(1 - a^2), {x, 0, 30}], x] (* Geoffrey Critzer, Mar 28 2010 *)

PROG

(PARI) a(n)=if(n<2, n==0, 2^(n-2))

CROSSREFS

Cf. A011782, A131577, A000079.

Sequence in context: A249169 A247208 A011782 * A123344 A141531 A166444

Adjacent sequences:  A034005 A034006 A034007 * A034009 A034010 A034011

KEYWORD

easy,nonn

AUTHOR

Wolfdieter Lang

EXTENSIONS

Additional comments from Barry E. Williams, May 27 2000

Additional comments from Michael Somos, Jun 18 2002

Edited by M. F. Hasler, Jan 13 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 03:10 EDT 2019. Contains 323412 sequences. (Running on oeis4.)