login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249169 Fibonacci 16-step numbers, a(n) = a(n-1) + a(n-2) + ... + a(n-16). 0
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65535, 131069, 262136, 524268, 1048528, 2097040, 4194048, 8388032, 16775936, 33551616, 67102720, 134204416, 268406784, 536809472, 1073610752, 2147205120, 4294377472, 8588689409 (list; graph; refs; listen; history; text; internal format)
OFFSET

15,3

LINKS

Table of n, a(n) for n=15..49.

M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, J. Int. Seq. 18 (2015) # 15.4.7.

Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1).

FORMULA

a(n) = a(n-1) + a(n-2) + ... + a(n-16).

G.f.: -x^15 / (x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5 +x^4+x^3+x^2+x-1). - Alois P. Heinz, Oct 23 2014

MAPLE

a:= proc(n) option remember; `if`(n<15, 0,

      `if`(n=15, 1, add(a(n-j), j=1..16)))

    end:

seq(a(n), n=15..50);  # Alois P. Heinz, Oct 23 2014

MATHEMATICA

CoefficientList[Series[-1 /(x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 21 2014 *)

CROSSREFS

Other k-step Fibonacci sequences: Cf. A000045, A000213, A000288, A000322, A000383, A060455, A123526, A127193, A127194, A168083, A207539, A168084, A220469, A220493.

Sequence in context: A320487 A323830 A118655 * A247208 A325744 A011782

Adjacent sequences:  A249166 A249167 A249168 * A249170 A249171 A249172

KEYWORD

nonn,easy

AUTHOR

Alan N. Inglis, Oct 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 11:03 EST 2020. Contains 332279 sequences. (Running on oeis4.)