login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220469
Fibonacci 14-step numbers, a(n) = a(n-1) + a(n-2) + ... + a(n-14).
1
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16383, 32765, 65528, 131052, 262096, 524176, 1048320, 2096576, 4193024, 8385792, 16771072, 33541120, 67080192, 134156288, 268304384, 536592385, 1073152005, 2146238482, 4292345912, 8584429728
OFFSET
1,3
COMMENTS
Also called tetradecanacci numbers. In previous similar sequences, a(1),...,a(n-1) have been set equal to zero and a(n)=1. For example, A168084 (Fibonacci 13-step numbers) has 12 0's as the first 12 terms and a(13)=1.
LINKS
Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4
Index entries for linear recurrences with constant coefficients, signature (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).
MATHEMATICA
FibonacciSequence[n_, kMax_] := Module[{a, s}, a = Join[{1}, Table[0, {n - 1}]]; lst = {}; Table[s = Plus @@ a; a = RotateLeft[a]; a[[n]] = s, {k, 1, kMax}]]; FibonacciSequence[14, 50] (* T. D. Noe, Feb 20 2013 *)
Drop[LinearRecurrence[PadRight[{}, 14, 1], Join[PadRight[{}, 13, 0], {1}], 50], 13] (* Harvey P. Dale, Feb 25 2013 *)
LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}, 35] (* Ray Chandler, Aug 03 2015 *)
CROSSREFS
Cf. A000045 (Fibonacci), A000073 (tribonacci), A000078 (tetranacci), A001591 (pentanacci).
Sequence in context: A216095 A190126 A219676 * A370254 A328679 A220051
KEYWORD
nonn
AUTHOR
Ruskin Harding, Feb 20 2013
STATUS
approved