OFFSET
1,2
COMMENTS
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
4: {1,1}
8: {1,1,1}
16: {1,1,1,1}
32: {1,1,1,1,1}
64: {1,1,1,1,1,1}
128: {1,1,1,1,1,1,1}
256: {1,1,1,1,1,1,1,1}
512: {1,1,1,1,1,1,1,1,1}
1024: {1,1,1,1,1,1,1,1,1,1}
2048: {1,1,1,1,1,1,1,1,1,1,1}
4096: {1,1,1,1,1,1,1,1,1,1,1,1}
8192: {1,1,1,1,1,1,1,1,1,1,1,1,1}
16384: {1,1,1,1,1,1,1,1,1,1,1,1,1,1}
17719: {6,10,15}
32768: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
40807: {6,14,21}
43381: {6,15,20}
50431: {10,12,15}
65536: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[10000], #==1||GCD@@primeMS[#]==1&&And[And@@(GCD[##]>1&)@@@Subsets[Union[primeMS[#]], {2}]]&]
CROSSREFS
These are the Heinz numbers of the partitions counted by A328672.
Terms that are not powers of 2 are A328868.
The strict case is A318716.
The version without global relative primality is A328867.
A ranking using binary indices (instead of prime indices) is A326912.
The version for non-isomorphic multiset partitions is A319759.
The version for divisibility (instead of relative primality) is A328677.
Heinz numbers of relatively prime partitions are A289509.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 30 2019
STATUS
approved