login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A200976
Number of partitions of n such that each pair of parts (if any) has a common factor.
28
1, 0, 1, 1, 2, 1, 4, 1, 5, 3, 8, 1, 14, 1, 16, 9, 22, 1, 38, 1, 45, 17, 57, 1, 94, 7, 102, 30, 138, 1, 218, 2, 231, 58, 298, 21, 451, 3, 491, 103, 644, 4, 919, 4, 1005, 203, 1257, 7, 1784, 20, 1993, 301, 2441, 10, 3365, 70, 3737, 496, 4569, 17, 6252, 23, 6848
OFFSET
0,5
COMMENTS
a(n) is different from A018783(n) for n = 0, 31, 37, 41, 43, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, ... .
Every pair of (possibly equal) parts has a common factor > 1. These partitions are said to be (pairwise) intersecting. - Gus Wiseman, Nov 04 2019
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..350 (terms 0..250 from Alois P. Heinz)
L. Naughton, G. Pfeiffer, Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group, J. Int. Seq. 16 (2013) #13.5.8
FORMULA
a(n > 0) = A328673(n) - 1. - Gus Wiseman, Nov 04 2019
EXAMPLE
a(0) = 1: [];
a(4) = 2: [2,2], [4];
a(9) = 3: [3,3,3], [3,6], [9];
a(31) = 2: [6,10,15], [31];
a(41) = 4: [6,10,10,15], [6,15,20], [6,14,21], [41].
MAPLE
b:= proc(n, j, s) local ok, i;
if n=0 then 1
elif j<2 then 0
else ok:= true;
for i in s while ok do ok:= evalb(igcd(i, j)<>1) od;
`if`(ok, add(b(n-j*k, j-1, [s[], j]), k=1..n/j), 0) +b(n, j-1, s)
fi
end:
a:= n-> b(n, n, []):
seq(a(n), n=0..62);
MATHEMATICA
b[n_, j_, s_] := Module[{ok, i, is}, Which[n == 0, 1, j < 2, 0, True, ok = True; For[is = 1, is <= Length[s] && ok, is++, i = s[[is]]; ok = GCD[i, j] != 1]; If[ok, Sum[b[n-j*k, j-1, Append[s, j]], {k, 1, n/j}], 0] + b[n, j-1, s]]]; a[n_] := b[n, n, {}]; Table[a[n], {n, 0, 62}] (* Jean-François Alcover, Dec 26 2013, translated from Maple *)
Table[Length[Select[IntegerPartitions[n], And[And@@(GCD[##]>1&)@@@Select[Tuples[Union[#], 2], LessEqual@@#&]]&]], {n, 0, 20}] (* Gus Wiseman, Nov 04 2019 *)
CROSSREFS
Cf. A018783.
The version with only distinct parts compared is A328673.
The relatively prime case is A202425.
The strict case is A318717.
The version for non-isomorphic multiset partitions is A319752.
The version for set-systems is A305843.
Sequence in context: A083711 A339619 A018783 * A328187 A331885 A298971
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 29 2011
STATUS
approved