OFFSET
0,5
COMMENTS
a(n) is different from A018783(n) for n = 0, 31, 37, 41, 43, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, ... .
Every pair of (possibly equal) parts has a common factor > 1. These partitions are said to be (pairwise) intersecting. - Gus Wiseman, Nov 04 2019
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..350 (terms 0..250 from Alois P. Heinz)
L. Naughton, G. Pfeiffer, Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group, J. Int. Seq. 16 (2013) #13.5.8
FORMULA
a(n > 0) = A328673(n) - 1. - Gus Wiseman, Nov 04 2019
EXAMPLE
a(0) = 1: [];
a(4) = 2: [2,2], [4];
a(9) = 3: [3,3,3], [3,6], [9];
a(31) = 2: [6,10,15], [31];
a(41) = 4: [6,10,10,15], [6,15,20], [6,14,21], [41].
MAPLE
b:= proc(n, j, s) local ok, i;
if n=0 then 1
elif j<2 then 0
else ok:= true;
for i in s while ok do ok:= evalb(igcd(i, j)<>1) od;
`if`(ok, add(b(n-j*k, j-1, [s[], j]), k=1..n/j), 0) +b(n, j-1, s)
fi
end:
a:= n-> b(n, n, []):
seq(a(n), n=0..62);
MATHEMATICA
b[n_, j_, s_] := Module[{ok, i, is}, Which[n == 0, 1, j < 2, 0, True, ok = True; For[is = 1, is <= Length[s] && ok, is++, i = s[[is]]; ok = GCD[i, j] != 1]; If[ok, Sum[b[n-j*k, j-1, Append[s, j]], {k, 1, n/j}], 0] + b[n, j-1, s]]]; a[n_] := b[n, n, {}]; Table[a[n], {n, 0, 62}] (* Jean-François Alcover, Dec 26 2013, translated from Maple *)
Table[Length[Select[IntegerPartitions[n], And[And@@(GCD[##]>1&)@@@Select[Tuples[Union[#], 2], LessEqual@@#&]]&]], {n, 0, 20}] (* Gus Wiseman, Nov 04 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 29 2011
STATUS
approved