The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328868 Heinz numbers of integer partitions with no two (not necessarily distinct) parts relatively prime, but with no divisor in common to all of the parts. 5
 17719, 40807, 43381, 50431, 74269, 83143, 101543, 105703, 116143, 121307, 123469, 139919, 140699, 142883, 171613, 181831, 185803, 191479, 203557, 205813, 211381, 213239, 215267, 219271, 230347, 246703, 249587, 249899, 279371, 286897, 289007, 296993, 300847 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). LINKS EXAMPLE The sequence of terms together with their prime indices begins:    17719: {6,10,15}    40807: {6,14,21}    43381: {6,15,20}    50431: {10,12,15}    74269: {6,10,45}    83143: {10,15,18}   101543: {6,21,28}   105703: {6,15,40}   116143: {12,14,21}   121307: {10,15,24}   123469: {12,15,20}   139919: {6,15,50}   140699: {6,22,33}   142883: {6,10,75}   171613: {6,14,63}   181831: {6,20,45}   185803: {10,14,35}   191479: {14,18,21}   203557: {15,18,20}   205813: {10,15,36}   211381: {10,12,45}   213239: {6,15,70}   215267: {6,10,105}   219271: {6,26,39}   230347: {6,6,10,15} MATHEMATICA primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]; dv=Select[Range[100000], GCD@@primeMS[#]==1&&And[And@@(GCD[##]>1&)@@@Tuples[Union[primeMS[#]], 2]]&] CROSSREFS These are the Heinz numbers of the partitions counted by A202425. Terms of A328679 that are not powers of 2. The strict case is A318716 (preceded by 2). A ranking using binary indices (instead of prime indices) is A326912. Heinz numbers of relatively prime partitions are A289509. Cf. A000837, A056239, A112798, A200976, A291166, A302796, A316476, A318715, A319752, A319759, A328336, A328672, A328677, A328867. Sequence in context: A187641 A252624 A252513 * A322552 A235023 A133540 Adjacent sequences:  A328865 A328866 A328867 * A328869 A328870 A328871 KEYWORD nonn AUTHOR Gus Wiseman, Oct 30 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 12:58 EST 2022. Contains 350477 sequences. (Running on oeis4.)