Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #65 Apr 05 2018 23:19:11
%S 1,1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16383,32765,65528,
%T 131052,262096,524176,1048320,2096576,4193024,8385792,16771072,
%U 33541120,67080192,134156288,268304384,536592385,1073152005,2146238482,4292345912,8584429728
%N Fibonacci 14-step numbers, a(n) = a(n-1) + a(n-2) + ... + a(n-14).
%C Also called tetradecanacci numbers. In previous similar sequences, a(1),...,a(n-1) have been set equal to zero and a(n)=1. For example, A168084 (Fibonacci 13-step numbers) has 12 0's as the first 12 terms and a(13)=1.
%H M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Janjic/janjic63.html">On Linear Recurrence Equations Arising from Compositions of Positive Integers</a>, J. Int. Seq. 18 (2015) # 15.4.7
%H Tony D. Noe and Jonathan Vos Post, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Noe/noe5.html">Primes in Fibonacci n-step and Lucas n-step Sequences,</a> J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4
%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).
%t FibonacciSequence[n_, kMax_] := Module[{a, s}, a = Join[{1}, Table[0, {n - 1}]]; lst = {}; Table[s = Plus @@ a; a = RotateLeft[a]; a[[n]] = s, {k, 1, kMax}]]; FibonacciSequence[14, 50] (* _T. D. Noe_, Feb 20 2013 *)
%t Drop[LinearRecurrence[PadRight[{},14,1],Join[PadRight[{},13,0],{1}],50],13] (* _Harvey P. Dale_, Feb 25 2013 *)
%t LinearRecurrence[{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},{1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096},35] (* _Ray Chandler_, Aug 03 2015 *)
%Y Cf. A000045 (Fibonacci), A000073 (tribonacci), A000078 (tetranacci), A001591 (pentanacci).
%K nonn
%O 1,3
%A _Ruskin Harding_, Feb 20 2013