This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060455 7th-order Fibonacci numbers with a(0)=...=a(6)=1. 37
 1, 1, 1, 1, 1, 1, 1, 7, 13, 25, 49, 97, 193, 385, 769, 1531, 3049, 6073, 12097, 24097, 48001, 95617, 190465, 379399, 755749, 1505425, 2998753, 5973409, 11898817, 23702017, 47213569, 94047739, 187339729, 373174033, 743349313, 1480725217 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS a(n) = number of runs in polyphase sort using 8 tapes and n-6 phases. REFERENCES N. Wirth, Algorithmen und Datenstrukturen, 1975 (table 2.15 chapter 2.3.4). LINKS Indranil Ghosh, Table of n, a(n) for n = 0..3339 (terms 0..200 from T. D. Noe) R. L. Gilstad, Polyphase Merge Sort - Advanced Technique, Proc. AFIPS Eastern Jt. Comp. Conf. 18 (1960) 143-148. Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1). FORMULA a(n) = a(n-1) + a(n-2) + ... + a(n-7) for n > 6, a(0)=a(1)=...=a(6)=1. G.f.: (-1 + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6)/(-1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7). - R. J. Mathar, Oct 11 2011 EXAMPLE General formula for k-th order numbers: f(n,k) = f(n-1,k) + ... + f(n-1-k,k) for n > k, otherwise f(n,k) = 1. MAPLE A060455 := proc(n) option remember: if n >=0 and n<=6 then RETURN(1) fi: a(n-1)+a(n-2)+a(n-3)+a(n-4)+a(n-5)+a(n-6)+a(n-7) end; MATHEMATICA LinearRecurrence[{1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1}, 40] (* Harvey P. Dale, Mar 17 2012 *) PROG (PARI) Vec((1-x^2-2*x^3-3*x^4-4*x^5-5*x^6)/(1-x-x^2-x^3-x^4-x^5-x^6-x^7) +O(x^40)) \\ Charles R Greathouse IV, Feb 03 2014 (MAGMA) m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(  (1-x^2-2*x^3-3*x^4-4*x^5-5*x^6)/(1-x-x^2-x^3-x^4-x^5-x^6-x^7) )); // G. C. Greubel, Feb 03 2019 (Sage) ((1-x^2-2*x^3-3*x^4-4*x^5-5*x^6)/(1-x-x^2-x^3-x^4-x^5-x^6-x^7) ).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 03 2019 CROSSREFS For k=1..5 see A000045, A000213, A000288, A000322, A000383. Cf. A253333, A253318: primes and indices of primes in this sequence. Cf. A122189 Heptanacci numbers with a(0),...,a(6) = 0,0,0,0,0,0,1. Sequence in context: A294943 A111721 A213663 * A205541 A072579 A067870 Adjacent sequences:  A060452 A060453 A060454 * A060456 A060457 A060458 KEYWORD easy,nonn AUTHOR Frank Ellermann, Apr 08 2001 EXTENSIONS More terms from James A. Sellers, Apr 11 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 00:52 EDT 2019. Contains 328315 sequences. (Running on oeis4.)