login
A060457
Number of solutions to y^2 + y = x^3 - x^2 modulo n.
6
1, 4, 4, 8, 4, 16, 9, 16, 12, 16, 10, 32, 9, 36, 16, 32, 19, 48, 19, 32, 36, 40, 24, 64, 20, 36, 36, 72, 29, 64, 24, 64, 40, 76, 36, 96, 34, 76, 36, 64, 49, 144, 49, 80, 48, 96, 39, 128, 63, 80, 76, 72, 59, 144, 40, 144, 76, 116, 54, 128, 49, 96, 108, 128, 36, 160, 74
OFFSET
1,2
COMMENTS
Singh mistakenly called this the L-series, but the L-series for elliptic curve y^2 + y = x^3 - x^2 is A006571. - Michael Somos, Mar 20 2010
REFERENCES
Simon Singh, Fermat's last theorem, 1997 (at the end of ch. 4).
LINKS
EXAMPLE
a(5)=4 from the 4 solutions (0,0), (0,4), (1,0), (1,4) mod 5.
G.f. = x + 4*x^2 + 4*x^3 + 8*x^4 + 4*x^5 + 16*x^6 + 9*x^7 + 16*x^8 + 12*x^9 + ...
PROG
(PARI) {a(n) = sum(x=0, n-1, sum(y=0, n-1, (y^2 + y - x^3 + x^2) % n == 0))}; /* Michael Somos, Mar 20 2010 */
(PARI) {a(n) = local(E, A, p, e); if(n<1, 0, E = ellinit( [0, -1, 1, 0, 0], 1); A = factor(n); prod( k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; (p - ellap(E, p)) * p^(e-1) )))}; /* Michael Somos, Mar 20 2010 */
CROSSREFS
Sequence in context: A255485 A322328 A095727 * A339756 A163369 A290841
KEYWORD
nonn,mult
AUTHOR
Frank Ellermann, Apr 09 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Apr 13 2001
STATUS
approved