OFFSET
1,1
COMMENTS
The last n digits of 2^a(n) are predictable if maximal values of periods are known.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (7, -11, 5).
FORMULA
a(1) = 3, a(n) = 5*a(n-1)-(3+4*(n-2)).
a(n) = a(n) = 2*5^(n-1) + n.
G.f.: (-3 + 9 x - 2 x^2)/((-1 + x)^2 (-1 + 5 x)) - Harvey P. Dale, Aug 01 2021
EXAMPLE
a(2) = 5*3-(3+4*0) = 15-3 = 12, etc...
For n=2, the last 2 digits of powers of 2 have the period {2,4,8,16,32,64,28,56,12,24,48,96,92,84,68,36,72,44,88,76,52,4,8,16,32} displayed in A000855. The maximum is 96 and it occurs at 2^12=4096. So a(2)=12.
MATHEMATICA
nxt[{n_, a_, b_}]:={n+1, b, 5b-(3+4(n-1))}; NestList[nxt, {2, 3, 12}, 20][[All, 2]] (* or *) Table[2*5^(n-1)+n, {n, 30}] (* or *) LinearRecurrence[{7, -11, 5}, {3, 12, 53}, 30] (* Harvey P. Dale, Aug 01 2021 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Labos Elemer, Apr 09 2001
EXTENSIONS
Offset 1 (and formulas adapted) from Michel Marcus, Mar 25 2020
STATUS
approved