|
|
A060460
|
|
Consider the final n decimal digits of 2^j for all values of j. They are periodic. Sequence gives position (or phase) of the maximal value seen in these n digits.
|
|
1
|
|
|
3, 12, 53, 254, 1255, 6256, 31257, 156258, 781259, 3906260, 19531261, 97656262, 488281263, 2441406264, 12207031265, 61035156266, 305175781267, 1525878906268, 7629394531269, 38146972656270, 190734863281271
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The last n digits of 2^a(n) are predictable if maximal values of periods are known.
|
|
LINKS
|
Table of n, a(n) for n=1..21.
Index entries for sequences related to final digits of numbers
|
|
FORMULA
|
a(1) = 3, a(n) = 5*a(n-1)-(3+4*(n-2)).
a(n) = a(n) = 2*5^(n-1) + n.
|
|
EXAMPLE
|
a(2) = 5*3-(3+4*0) = 15-3 = 12, etc...
For n=2, the last 2 digits of powers of 2 have the period {2,4,8,16,32,64,28,56,12,24,48,96,92,84,68,36,72,44,88,76,52,4,8,16,32} displayed in A000855. The maximum is 96 and it occurs at 2^12=4096. So a(2)=12.
|
|
CROSSREFS
|
Cf. A000079, A000855, A005054, A060458.
Sequence in context: A110122 A307412 A302188 * A306525 A293131 A120983
Adjacent sequences: A060457 A060458 A060459 * A060461 A060462 A060463
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Labos Elemer, Apr 09 2001
|
|
EXTENSIONS
|
Offset 1 (and formulas adapted) from Michel Marcus, Mar 25 2020
|
|
STATUS
|
approved
|
|
|
|