The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060460 Consider the final n decimal digits of 2^j for all values of j. They are periodic. Sequence gives position (or phase) of the maximal value seen in these n digits. 1
 3, 12, 53, 254, 1255, 6256, 31257, 156258, 781259, 3906260, 19531261, 97656262, 488281263, 2441406264, 12207031265, 61035156266, 305175781267, 1525878906268, 7629394531269, 38146972656270, 190734863281271 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The last n digits of 2^a(n) are predictable if maximal values of periods are known. LINKS FORMULA a(1) = 3, a(n) = 5*a(n-1)-(3+4*(n-2)). a(n) = a(n) = 2*5^(n-1) + n. EXAMPLE a(2) = 5*3-(3+4*0) = 15-3 = 12, etc... For n=2, the last 2 digits of powers of 2 have the period {2,4,8,16,32,64,28,56,12,24,48,96,92,84,68,36,72,44,88,76,52,4,8,16,32} displayed in A000855. The maximum is 96 and it occurs at 2^12=4096. So a(2)=12. CROSSREFS Cf. A000079, A000855, A005054, A060458. Sequence in context: A110122 A307412 A302188 * A306525 A293131 A120983 Adjacent sequences:  A060457 A060458 A060459 * A060461 A060462 A060463 KEYWORD base,nonn AUTHOR Labos Elemer, Apr 09 2001 EXTENSIONS Offset 1 (and formulas adapted) from Michel Marcus, Mar 25 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 17:25 EST 2021. Contains 340363 sequences. (Running on oeis4.)