OFFSET
0,3
FORMULA
G.f.: exp( Sum_{k>=1} A378462(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x - x^2/(1 - x)^2)^(n+1).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(2*n+k,n-2*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^2/(1-x)^2))/x)
(PARI) a(n) = sum(k=0, n\2, binomial(n+k, k)*binomial(2*n+k, n-2*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 27 2024
STATUS
approved