login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378467
Expansion of (1/x) * Series_Reversion( x * (1 - x - x^2/(1 - x)^2) ).
2
1, 1, 3, 12, 53, 249, 1223, 6207, 32296, 171355, 923583, 5042840, 27834231, 155052721, 870594423, 4921968177, 27995045409, 160080985928, 919731472614, 5306779508096, 30737417720495, 178654274650097, 1041678247875531, 6091298104643577, 35714017347725474
OFFSET
0,3
FORMULA
G.f.: exp( Sum_{k>=1} A378462(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x - x^2/(1 - x)^2)^(n+1).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(2*n+k,n-2*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^2/(1-x)^2))/x)
(PARI) a(n) = sum(k=0, n\2, binomial(n+k, k)*binomial(2*n+k, n-2*k))/(n+1);
CROSSREFS
Cf. A378462.
Sequence in context: A262442 A026781 A110122 * A307412 A302188 A060460
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 27 2024
STATUS
approved