login
A302188
Number of 3D walks of type bce.
0
1, 3, 12, 53, 252, 1252, 6416, 33609, 178996, 965660, 5263728, 28936404, 160204336, 892313424, 4995832640, 28096475977, 158638993476, 898844200524, 5108695394096, 29117034808980, 166370716319088, 952789631705104, 5467881256289856, 31438798094242244, 181079794531199440, 1044651995141484912
OFFSET
0,2
COMMENTS
See Dershowitz (2017) for precise definition.
Binomial transform of A150500 (Number of 3D walks of type bcd). - Mélika Tebni, Nov 28 2024
LINKS
Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
PROG
(Python)
from math import comb as binomial
def a(n):
return sum(binomial(n, k)*sum(binomial(k, j)*binomial(j, j//2)**2 for j in range(k+1)) for k in range(n+1))
print([a(n) for n in range(26)]) # Mélika Tebni, Nov 28 2024
KEYWORD
nonn,walk
AUTHOR
N. J. A. Sloane, Apr 09 2018
EXTENSIONS
a(12)-a(25) from Mélika Tebni, Nov 28 2024
STATUS
approved