login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378466
Expansion of (1/x) * Series_Reversion( x * (1 - x - x/(1 - x)^2) ).
3
1, 2, 10, 63, 444, 3351, 26490, 216523, 1815080, 15519271, 134817972, 1186570526, 10557959696, 94817735251, 858333997230, 7823946906726, 71751021314438, 661541649024816, 6128551736153622, 57018343512420580, 532529776531703666, 4991007108135966433
OFFSET
0,2
FORMULA
G.f.: exp( Sum_{k>=1} A378461(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x - x/(1 - x)^2)^(n+1).
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(2*n+2*k,n-k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x/(1-x)^2))/x)
(PARI) a(n) = sum(k=0, n, binomial(n+k, k)*binomial(2*n+2*k, n-k))/(n+1);
CROSSREFS
Cf. A378461.
Sequence in context: A361829 A361494 A371546 * A175962 A183165 A129130
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 27 2024
STATUS
approved