login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361829
a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(n*k,n-k).
3
1, 2, 10, 62, 486, 4482, 47106, 553226, 7152438, 100644194, 1527758136, 24839853326, 430045385424, 7888706328934, 152685931935634, 3106864307092950, 66253232332628166, 1476558925897693698, 34307420366092350048, 829217371825336147142
OFFSET
0,2
FORMULA
a(n) = [x^n] 1/sqrt(1 - 4*x*(1+x)^n).
log(a(n)) ~ n*(log(n) + (2*log(2) - 1)/log(n) - (1 - 1/log(n))*log(log(n) - 1)). - Vaclav Kotesovec, Mar 26 2023
MATHEMATICA
Table[Sum[Binomial[2*k, k]*Binomial[n*k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 26 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(2*k, k)*binomial(n*k, n-k));
CROSSREFS
Main diagonal of A361830.
Sequence in context: A307364 A141140 A232472 * A361494 A371546 A378466
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 26 2023
STATUS
approved