OFFSET
1,2
COMMENTS
In a triangle of n*(n+1)/2 grid points of the hexagonal lattice, the grid points are assigned integers b(j,k) > 0, such that if b(j,k) = i, then all numbers 1 ... i-1 are represented in the node values of the nearest neighbors (i-1,j), (i-1,j+1), (i,j-1), (i,j+1), (i+1,j-1), (i+1,j) of point (i,j) in the lattice.
o
/ \
o - o
/ \ / \
j+1 ------ o - O - O
/ \ / \ / \
j ---- o - O- i,j -O
/ \ / \ / \ / \
j-1 -- o - o - O - O - o
/ \ / \ / \ / \ / \
o - o - o - o - o - o
/ / /
i-1 i i+1
In the interior of the figure, there are A003215(1)-1 = 6 nearest neighbors (hence b(j,k) <= 7); points on the sides of the triangle have 4 nearest neighbors (b(j,k) <= 5), and the corners of the triangle have 2 nearest neighbors (b(j,k) <= 3).
a(n) is the sum of the n*(n+1)/2 = A000217(n) values of b(j,k).
LINKS
IBM Research, Maximal sum 6x6 grid, Ponder This December 2012.
EXAMPLE
a(1) = 1 for the degenerate triangle.
a(2) = 7:
1
/ \
2 - 3
and the equivalent figures resulting from rotation and reflection.
.
a(3) = 13: 1 solution; the shown versions are all equivalent.
1 1 2 2 2 2
/ \ / \ / \ / \ / \ / \
3 - 4 4 - 3 1 - 3 1 - 4 3 - 1 4 - 1
/ \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \
2 - 1 - 2 2 - 1 - 2 2 - 4 - 1 2 - 3 - 1 1 - 4 - 2 1 - 3 - 2
.
a(4) = 26: 6 essentially distinct solutions
1 1 - 4 - 2 - 3 1 1 - 5 - 3 - 2 1 1 - 4 - 3 - 2
/ \ \ / \ / \ / / \ \ / \ / \ / / \ \ / \ / \ /
2 - 4 5 - 3 - 1 3 - 4 4 - 2 - 1 3 - 4 5 - 2 - 1
/ \ / \ \ / \ / / \ / \ \ / \ / / \ / \ \ / \ /
4 - 3 - 1 2 - 4 1 - 2 - 5 3 - 4 4 - 2 - 5 3 - 4
/ \ / \ / \ \ / / \ / \ / \ \ / / \ / \ / \ \ /
1 - 5 - 2 - 3 1 2 - 4 - 3 - 1 1 2 - 1 - 3 - 1 1
.
a(5) = 43: 4 essentially distinct solutions
2 2 - 1 - 5 - 2 - 3 3 3 - 1 - 4 - 2 - 3
/ \ \ / \ / \ / \ / / \ \ / \ / \ / \ /
1 - 3 4 - 3 - 4 - 1 1 - 2 2 - 5 - 3 - 1
/ \ / \ \ / \ / \ / / \ / \ \ / \ / \ /
4 - 2 - 5 5 - 2 - 5 3 - 5 - 4 3 - 6 - 4
/ \ / \ / \ \ / \ / / \ / \ / \ \ / \ /
5 - 3 - 4 - 1 1 - 3 2 - 6 - 3 - 1 1 - 2
/ \ / \ / \ / \ \ / / \ / \ / \ / \ \ /
2 - 1 - 5 - 2 - 3 2 3 - 1 - 4 - 2 - 3 3
.
a(6) = 62: 4 essentially distinct solutions
1 2 - 1 - 2 - 3 - 1 - 3 1 3 - 1 - 3 - 2 - 1 - 2
/ \ \ / \ / \ / \ / \ / / \ \ / \ / \ / \ / \ /
4 - 5 3 - 4 - 5 - 6 - 2 4 - 5 2 - 6 - 5 - 4 - 3
/ \ / \ \ / \ / \ / \ / / \ / \ \ / \ / \ / \ /
3 - 2 - 3 1 - 6 - 1 - 4 3 - 2 - 3 4 - 1 - 6 - 1
/ \ / \ / \ \ / \ / \ / / \ / \ / \ \ / \ / \ /
1 - 4 - 1 - 4 3 - 2 - 3 4 - 1 - 4 - 1 3 - 2 - 3
/ \ / \ / \ / \ \ / \ / / \ / \ / \ / \ \ / \ /
3 - 6 - 5 - 6 - 2 4 - 5 2 - 6 - 5 - 6 - 3 4 - 5
/ \ / \ / \ / \ / \ \ / / \ / \ / \ / \ / \ \ /
2 - 1 - 2 - 3 - 1 - 3 1 3 - 1 - 3 - 2 - 1 - 2 1
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Hugo Pfoertner, Sep 16 2020
STATUS
approved