login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067870
Numbers k such that k and 3^k end with the same digit.
2
7, 13, 27, 33, 47, 53, 67, 73, 87, 93, 107, 113, 127, 133, 147, 153, 167, 173, 187, 193, 207, 213, 227, 233, 247, 253, 267, 273, 287, 293, 307, 313, 327, 333, 347, 353, 367, 373, 387, 393, 407, 413, 427, 433, 447, 453, 467, 473, 487, 493, 507, 513, 527, 533
OFFSET
1,1
COMMENTS
Also numbers k such that k^k ends with 3. - Bruno Berselli, Dec 11 2018
Numbers congruent to {7, 13} mod 20. - Amiram Eldar, Feb 27 2023
FORMULA
a(2*n+1) = 20*n-13, a(2*n) = 20*n-7.
a(n) = 20*(n-1)-a(n-1) for n>1, a(1)=7. - Vincenzo Librandi, Aug 08 2010
From Colin Barker, Apr 06 2020: (Start)
G.f.: x*(7 + 6*x + 7*x^2) / ((1 - x)^2*(1 + x)).
a(n) = -5 - 2*(-1)^n + 10*n for n>0.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(3*Pi/20)*Pi/20. - Amiram Eldar, Feb 27 2023
EXAMPLE
3^13 = 1594323 hence 13 is in the sequence.
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {7, 13, 27}, 50] (* Amiram Eldar, Feb 27 2023 *)
PROG
(PARI) a(n) = (5*(2*n-1)*(-1)^n - 2)*(-1)^n; \\ Jinyuan Wang, Apr 06 2020
(PARI) Vec(x*(7 + 6*x + 7*x^2) / ((1 - x)^2*(1 + x)) + O(x^50)) \\ Colin Barker, Apr 06 2020
CROSSREFS
Sequence in context: A205541 A072579 A337433 * A147258 A146718 A146646
KEYWORD
nonn,base,easy
AUTHOR
Benoit Cloitre, Mar 07 2002
STATUS
approved