OFFSET
2,1
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 2..10000 (first 576 terms from Robert Israel)
EXAMPLE
a(6)=6 because it is the least denominator z in the A192787(6)=8 solutions
[x, y, z]: [2, 7, 42], [2, 8, 24], [2, 9, 18], [2, 10, 15], [2, 12, 12],
[3, 4, 12], [3, 6, 6], [4, 4, 6];
a(13)=52 because the minimum of z in the A192787(13)=4 solutions is 52:
[4, 18, 468], [4, 20, 130], [4, 26, 52], [5, 10, 130].
MAPLE
f:= proc(n) local z, x, y;
for z from floor(n/4)+1 do
for x from floor(n*z/(4*z-n))+1 to z do
y:= n*x*z/(4*x*z-n*x-n*z);
if y::posint and y >= x and y <= z then return z fi
od od
end proc:
map(f, [$2..100]); # Robert Israel, Oct 14 2020
MATHEMATICA
a[n_] := For[z = Floor[n/4] + 1, True, z++, For[x = Floor[n(z/(4z - n))] + 1, x <= z, x++, y = n x z/(4 x z - n x - n z); If[IntegerQ[y] && x <= y <= z, Print[z]; Return [z]]]];
a /@ Range[2, 100] (* Jean-François Alcover, Oct 23 2020, after Robert Israel *)
PROG
(PARI) a337432(n)={my(target=4/n, a, b, c, m=oo); for(a=1\target+1, 3\target, my(t=target-1/a); for(b=max(1\t+1, a), 2\t, c=1/(t-1/b); if(denominator(c)==1, m=min(m, max(a, max(b, c)))))); m};
for(k=2, 67, print1(a337432(k), ", "))
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Hugo Pfoertner, Oct 13 2020
STATUS
approved