login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292581
Number of solutions to 4/n = 1/x + 1/y + 1/z in positive integers.
7
0, 3, 12, 10, 12, 39, 36, 46, 30, 63, 48, 106, 24, 93, 216, 148, 24, 141, 60, 196, 162, 141, 120, 304, 60, 111, 162, 232, 42, 459, 108, 394, 174, 141, 372, 442, 54, 183, 420, 538, 42, 489, 78, 352, 540, 243, 198, 904, 102, 303, 294, 334, 78, 513
OFFSET
1,2
COMMENTS
Corrected version of A192786.
The Erdos-Straus conjecture is that a(n) > 0 for n > 1. Swett verified the conjecture for n < 10^14.
Vaughan shows that the number of n < x with a(n) = 0 is at most x exp(-c * (log x)^(2/3)) for some c > 0.
After a(2) = 3, the values shown are all composite. [Jonathan Vos Post, Jul 17 2011]
LINKS
Christian Elsholtz and Terence Tao, Counting the number of solutions to the Erdos-Straus equation on unit fractions, arXiv:1107.1010 [math.NT], 2011-2015.
Allan Swett, The Erdos-Strauss Conjecture, 1999.
R. C. Vaughan, On a problem of Erdős, Straus and Schinzel, Mathematika 17 (1970), pp. 193-198.
EXAMPLE
a(3)=12 because 4/3 can be expressed in 12 ways:
4/3 = 1/1 + 1/4 + 1/12
4/3 = 1/1 + 1/6 + 1/6
4/3 = 1/1 + 1/12 + 1/4
4/3 = 1/2 + 1/2 + 1/3
4/3 = 1/2 + 1/3 + 1/2
4/3 = 1/3 + 1/2 + 1/2
4/3 = 1/4 + 1/1 + 1/12
4/3 = 1/4 + 1/12 + 1/1
4/3 = 1/6 + 1/1 + 1/6
4/3 = 1/6 + 1/6 + 1/1
4/3 = 1/12 + 1/1 + 1/4
4/3 = 1/12 + 1/4 + 1/1
a(4) = 10 because 4/4 = 1 can be expressed in 10 ways:
4/4= 1/2 + 1/3 + 1/6
4/4= 1/2 + 1/4 + 1/4
4/4= 1/2 + 1/6 + 1/3
4/4= 1/3 + 1/2 + 1/6
4/4= 1/3 + 1/3 + 1/3
4/4= 1/3 + 1/6 + 1/2
4/4= 1/4 + 1/2 + 1/4
4/4= 1/4 + 1/4 + 1/2
4/4= 1/6 + 1/2 + 1/3
4/4= 1/6 + 1/3 + 1/2
MATHEMATICA
checkmult[a_, b_, c_] := If[Denominator[c] == 1, If[a == b && a == c && b == c, Return[1], If[a != b && a != c && b != c, Return[6], Return[3]]], Return[0]];
a292581[n_] := Module[{t, t1, s, a, b, c, q = Quotient}, t = 4/n; s = 0; For[a = q[1, t]+1, a <= q[3, t], a++, t1 = t - 1/a; For[b = Max[q[1, t1] + 1, a], b <= q[2, t1], b++, c = 1/(t1 - 1/b); s += checkmult[a, b, c]]]; Return[s]];
Reap[For[n=1, n <= 54, n++, Print[n, " ", an = a292581[n]]; Sow[an]]][[2, 1]] (* Jean-François Alcover, Dec 02 2018, adapted from PARI *)
PROG
(PARI) \\ modified version of code by Charles R Greathouse IV in A192786
checkmult (a, b, c) =
{
if(denominator(c)==1,
if(a==b && a==c && b==c,
return(1),
if(a!=b && a!=c && b!=c,
return(6),
return(3)
)
),
return(0)
)
}
a292581(n) =
{
local(t, t1, s, a, b, c);
t = 4/n;
s = 0;
for (a=1\t+1, 3\t,
t1=t-1/a;
for (b=max(1\t1+1, a), 2\t1,
c=1/(t1-1/b);
s+=checkmult(a, b, c);
)
);
return(s);
}
for (n=1, 54, print1(a292581(n), ", "))
CROSSREFS
For more references and links see A192787.
Sequence in context: A215842 A018876 A038230 * A207852 A182455 A110345
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Sep 20 2017
STATUS
approved