login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110345
a(n) = n + (n+1) + (n+2) + ... n terms if n is odd, else a(n) = n + (n-1) + (n-2) + ... n terms = n(n+1)/2 = n-th triangular number if n is even.
0
1, 3, 12, 10, 35, 21, 70, 36, 117, 55, 176, 78, 247, 105, 330, 136, 425, 171, 532, 210, 651, 253, 782, 300, 925, 351, 1080, 406, 1247, 465, 1426, 528, 1617, 595, 1820, 666, 2035, 741, 2262, 820, 2501, 903, 2752, 990, 3015, 1081, 3290, 1176, 3577, 1275, 3876, 1378
OFFSET
1,2
FORMULA
a(2n) = n*(2n+1), a(2n-1) = (2n-1)*(n-1)+(2n-1)^2. - Stefan Steinerberger, Jan 24 2006
From Bruno Berselli, Mar 19 2012: (Start)
G.f.: x*(1+3x+9x^2+x^3+2x^4)/(1-x^2)^3.
a(n) = n^2-(-1)^n*(n-1)*n/2. (End)
Sum_{n>=1} 1/a(n) = 2 + Pi/(2*sqrt(3)) + log(3*sqrt(3)/16). - Amiram Eldar, Sep 11 2022
EXAMPLE
a(3) = 3+4+5 = 12.
a(6) = 6+5+4+3+2+1 = 21.
MATHEMATICA
For[n = 1, n < 50, n++, If[EvenQ[n], Print[n*(n + 1)/2], Print[n^2 + n*(n - 1)/2]]] (* Stefan Steinerberger, Jan 24 2006 *)
CROSSREFS
Sequence in context: A292581 A207852 A182455 * A018999 A279305 A217785
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Jul 20 2005
EXTENSIONS
More terms from Stefan Steinerberger, Jan 24 2006
STATUS
approved