OFFSET
2,1
COMMENTS
Conjecture: For each n=2,3,... there are infinitely many primes of the form 1+2*s+...+n*s^{n-1}, where s is a positive integer; moreover, we have a(n)<12*n^2.
This is related to the following conjecture of the author: The polynomials s_n(x)=sum_{k=0}^n(k+1)x^k (n=1,2,3,...) are all irreducible over the field of rational numbers; moreover, s_n(x) is reducible modulo every prime if and only if n has the form 8k(k+1), where k is a positive integer.
Sum_{k=1..n} k*s^(k-1) = (1+n*s^(n+1)-s^n*(n+1))/(s-1)^2, see A059045. - R. J. Mathar, Mar 29 2013
LINKS
Zhi-Wei Sun and Charles R Greathouse IV, Table of n, a(n) for n = 2..1000 (first 450 terms from Sun)
EXAMPLE
a(20)=4500<12*20^2=4800 since 4500 is the least integer s>20 with 1+2*s+3*s^2+...+20*s^{19} prime.
MATHEMATICA
A[n_, x_]:=A[n, x]=Sum[(k+1)*x^k, {k, 0, n-1}]
Do[Do[If[PrimeQ[A[n, s]]==True, Print[n, " ", s]; Goto[aa]], {s, n+1, 12*n^2-1}];
Print[n, " ", counterexample]; Label[aa]; Continue, {n, 2, 100}]
PROG
(PARI) f(n, s)=my(t); forstep(k=n, 1, -1, t=s*t+k); t
a(n)=my(s=n); while(!ispseudoprime(f(n, s++)), ); s \\ Charles R Greathouse IV, Mar 25 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 24 2013
STATUS
approved