login
A059045
Square array T(n,k) read by antidiagonals where T(0,k) = 0 and T(n,k) = 1 + 2k + 3k^2 + ... + n*k^(n-1).
4
0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 49, 34, 9, 1, 0, 1, 21, 129, 142, 57, 11, 1, 0, 1, 28, 321, 547, 313, 86, 13, 1, 0, 1, 36, 769, 2005, 1593, 586, 121, 15, 1, 0, 1, 45, 1793, 7108, 7737, 3711, 985, 162, 17, 1, 0, 1, 55, 4097, 24604, 36409
OFFSET
0,8
FORMULA
T(n,k) = n*k^(n-1)+T(n-1, k) = (n*k^(n+1)-(n+1)*k^n+1)/(k-1)^2.
EXAMPLE
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, 15, 17, ...
1, 6, 17, 34, 57, 86, 121, 162, 209, ...
1, 10, 49, 142, 313, 586, 985, 1534, 2257, ...
1, 15, 129, 547, 1593, 3711, 7465, 13539, 22737, ...
1, 21, 321, 2005, 7737, 22461, 54121, 114381, 219345, ...
1, 28, 769, 7108, 36409, 131836, 380713, 937924, 2054353, ...
MAPLE
A059045 := proc(n, k)
if k = 1 then
n*(n+1) /2 ;
else
(1+n*k^(n+1)-k^n*(n+1))/(k-1)^2 ;
end if;
end proc: # R. J. Mathar, Mar 29 2013
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Henry Bottomley, Dec 18 2000
STATUS
approved