login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A317659
Regular triangle where T(n,k) is the number of distinct free pure symmetric multifunctions (with empty expressions allowed) with one atom, n positions, and k leaves.
1
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 43, 33, 9, 1, 0, 1, 21, 92, 118, 55, 11, 1, 0, 1, 28, 174, 341, 252, 82, 13, 1, 0, 1, 36, 302, 845, 935, 463, 115, 15, 1, 0, 1, 45, 490, 1864, 2921, 2103, 769, 153, 17, 1, 0, 1, 55, 755
OFFSET
1,8
LINKS
Mathematica Reference, Orderless
EXAMPLE
The T(5,3) = 5 expressions are o[o[o]], o[o,o[]], o[][o,o], o[o][o], o[o,o][].
Triangle begins:
1
1 0
1 1 0
1 3 1 0
1 6 5 1 0
1 10 17 7 1 0
1 15 43 33 9 1 0
1 21 92 118 55 11 1 0
1 28 174 341 252 82 13 1 0
1 36 302 845 935 463 115 15 1 0
1 45 490 1864 2921 2103 769 153 17 1 0
1 55 755 3755 7981 8012 4145 1187 197 19 1 0
MATHEMATICA
maxUsing[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{maxUsing[h], Union[Sort/@Tuples[maxUsing/@p]]}], {p, IntegerPartitions[g]}]]];
Table[Length[Select[maxUsing[n], Length[Position[#, "o"]]==k&]], {n, 12}, {k, n}]
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Aug 03 2018
STATUS
approved