login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317654 Number of free pure symmetric multifunctions whose leaves are a strongly normal multiset of size n. 10
1, 3, 26, 375, 6696, 159837, 4389226, 144915350, 5377002075, 227624621051, 10632808475596, 550932945236121, 31062550998284221, 1907051034025848314, 126052420069459211076, 8956882232940915920404, 679298518935625486287703, 54868537321267493152151502, 4696952405203792017289469056 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities. A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.

LINKS

Table of n, a(n) for n=1..19.

EXAMPLE

The a(3) = 26 free pure symmetric multifunctions:

1[1[1]], 1[1,1], 1[1][1],

1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1],

1[2[3]], 1[3[2]], 1[2,3], 2[1[3]], 2[3[1]], 2[1,3], 3[1[2]], 3[2[1]], 3[1,2], 1[2][3], 2[1][3], 1[3][2], 3[1][2], 2[3][1], 3[2][1].

MATHEMATICA

sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];

mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]];

got[y_]:=Join@@Table[Table[i, {y[[i]]}], {i, Range[Length[y]]}];

Table[Sum[Length[exprUsing[got[y]]], {y, IntegerPartitions[n]}], {n, 6}]

PROG

(PARI) \\ See links in A339645 for combinatorial species functions.

cycleIndexSeries(n)={my(p=O(x)); for(n=1, n, p = x*sv(1) + p*(sExp(p)-1)); p}

StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Jan 01 2021

CROSSREFS

Cf. A001003, A052893, A053492, A255906, A277996, A279944, A280000.

Cf. A317652, A317653, A317655, A317656, A317658.

Sequence in context: A136046 A206404 A262301 * A143155 A300283 A326431

Adjacent sequences:  A317651 A317652 A317653 * A317655 A317656 A317657

KEYWORD

nonn

AUTHOR

Gus Wiseman, Aug 03 2018

EXTENSIONS

Terms a(8) and beyond from Andrew Howroyd, Jan 01 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 23:46 EDT 2021. Contains 343957 sequences. (Running on oeis4.)