login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262301
Number of normal linear lambda terms of size n with no free variables.
6
1, 3, 26, 367, 7142, 176766, 5304356, 186954535, 7566084686, 345664350778, 17592776858796, 986961816330662, 60502424162842876, 4023421969420255644, 288464963899330354104, 22180309834307193611287, 1820641848410408158704734, 158897008602951290424279330
OFFSET
1,2
LINKS
Paul Tarau, Valeria de Paiva, Deriving Theorems in Implicational Linear Logic, Declaratively, arXiv:2009.10241 [cs.LO], 2020. See also Github, (2020).
Noam Zeilberger, Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596 [cs.LO], 2015.
Wikipedia, Lambda calculus
FORMULA
A(x) = F(x,0), where A(x) = Sum_{n>=1} a(n)*x^n and F(x,t) satisfies F = x*t/(1-F) + deriv(F,t), with F(0,t)=0, deriv(F,x)(0,t)=1+t. - Gheorghe Coserea, Apr 01 2017
EXAMPLE
A(x) = x + 3*x^2 + 26*x^3 + 367*x^4 + 7142*x^5 + ...
MATHEMATICA
terms = 18; F[_, _] = 0;
Do[F[x_, t_] = Series[x t/(1-F[x, t]) + D[F[x, t], t], {x, 0, terms}, {t, 0, terms}] // Normal, {2 terms}];
CoefficientList[F[x, 0], x][[2 ;; terms+1]] (* Jean-François Alcover, Sep 02 2018, after Gheorghe Coserea *)
PROG
(PARI)
F(N) = {
my(x='x+O('x^N), t='t, F0=x, F1=0, n=1);
while(n++,
F1 = x*t/(1-F0) + deriv(F0, t);
if (F1 == F0, break()); F0 = F1; );
F0;
};
seq(N) = Vec(subst(F(N+1), 't, 0));
seq(18) \\ Gheorghe Coserea, Apr 01 2017
CROSSREFS
Column 0 of A318110.
Sequence in context: A136046 A206404 A373425 * A368033 A376067 A317654
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 30 2015
EXTENSIONS
More terms from Gheorghe Coserea, Apr 01 2017
STATUS
approved