The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A262301 Number of normal linear lambda terms of size n with no free variables. 6
 1, 3, 26, 367, 7142, 176766, 5304356, 186954535, 7566084686, 345664350778, 17592776858796, 986961816330662, 60502424162842876, 4023421969420255644, 288464963899330354104, 22180309834307193611287, 1820641848410408158704734, 158897008602951290424279330 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Gheorghe Coserea, Table of n, a(n) for n = 1..100 Paul Tarau, Valeria de Paiva, Deriving Theorems in Implicational Linear Logic, Declaratively, arXiv:2009.10241 [cs.LO], 2020. See also Github, (2020). Noam Zeilberger, Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596 [cs.LO], 2015. Wikipedia, Lambda calculus FORMULA A(x) = F(x,0), where A(x) = Sum_{n>=1} a(n)*x^n and F(x,t) satisfies F = x*t/(1-F) + deriv(F,t), with F(0,t)=0, deriv(F,x)(0,t)=1+t. - Gheorghe Coserea, Apr 01 2017 EXAMPLE A(x) = x + 3*x^2 + 26*x^3 + 367*x^4 + 7142*x^5 + ... MATHEMATICA terms = 18; F[_, _] = 0; Do[F[x_, t_] = Series[x t/(1-F[x, t]) + D[F[x, t], t], {x, 0, terms}, {t, 0, terms}] // Normal, {2 terms}]; CoefficientList[F[x, 0], x][[2 ;; terms+1]] (* Jean-François Alcover, Sep 02 2018, after Gheorghe Coserea *) PROG (PARI) F(N) = {   my(x='x+O('x^N), t='t, F0=x, F1=0, n=1);   while(n++,     F1 = x*t/(1-F0) + deriv(F0, t);     if (F1 == F0, break()); F0 = F1; );   F0; }; seq(N) = Vec(subst(F(N+1), 't, 0)); seq(18) \\ Gheorghe Coserea, Apr 01 2017 CROSSREFS Column 0 of A318110. Cf. A062980, A267827. Sequence in context: A328269 A136046 A206404 * A317654 A143155 A300283 Adjacent sequences:  A262298 A262299 A262300 * A262302 A262303 A262304 KEYWORD nonn AUTHOR N. J. A. Sloane, Sep 30 2015 EXTENSIONS More terms from Gheorghe Coserea, Apr 01 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 00:22 EST 2022. Contains 350464 sequences. (Running on oeis4.)