login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of normal linear lambda terms of size n with no free variables.
6

%I #43 Jan 05 2021 21:36:31

%S 1,3,26,367,7142,176766,5304356,186954535,7566084686,345664350778,

%T 17592776858796,986961816330662,60502424162842876,4023421969420255644,

%U 288464963899330354104,22180309834307193611287,1820641848410408158704734,158897008602951290424279330

%N Number of normal linear lambda terms of size n with no free variables.

%H Gheorghe Coserea, <a href="/A262301/b262301.txt">Table of n, a(n) for n = 1..100</a>

%H Paul Tarau, Valeria de Paiva, <a href="https://arxiv.org/abs/2009.10241">Deriving Theorems in Implicational Linear Logic, Declaratively</a>, arXiv:2009.10241 [cs.LO], 2020. See also <a href="https://vcvpaiva.github.io/includes/pubs/2020-tarau.pdf">Github</a>, (2020).

%H Noam Zeilberger, <a href="http://arxiv.org/abs/1509.07596">Counting isomorphism classes of beta-normal linear lambda terms</a>, arXiv:1509.07596 [cs.LO], 2015.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lambda_calculus">Lambda calculus</a>

%F A(x) = F(x,0), where A(x) = Sum_{n>=1} a(n)*x^n and F(x,t) satisfies F = x*t/(1-F) + deriv(F,t), with F(0,t)=0, deriv(F,x)(0,t)=1+t. - Gheorghe Coserea, Apr 01 2017

%e A(x) = x + 3*x^2 + 26*x^3 + 367*x^4 + 7142*x^5 + ...

%t terms = 18; F[_, _] = 0;

%t Do[F[x_, t_] = Series[x t/(1-F[x, t]) + D[F[x, t], t], {x, 0, terms}, {t, 0, terms}] // Normal, {2 terms}];

%t CoefficientList[F[x, 0], x][[2 ;; terms+1]] (* _Jean-François Alcover_, Sep 02 2018, after _Gheorghe Coserea_ *)

%o (PARI)

%o F(N) = {

%o my(x='x+O('x^N), t='t, F0=x, F1=0, n=1);

%o while(n++,

%o F1 = x*t/(1-F0) + deriv(F0,t);

%o if (F1 == F0, break()); F0 = F1;);

%o F0;

%o };

%o seq(N) = Vec(subst(F(N+1), 't, 0));

%o seq(18) \\ _Gheorghe Coserea_, Apr 01 2017

%Y Column 0 of A318110.

%Y Cf. A062980, A267827.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Sep 30 2015

%E More terms from _Gheorghe Coserea_, Apr 01 2017