The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293617 Array of triangles read by ascending antidiagonals, T(m, n, k) = Pochhammer(m, k) * Stirling2(n + m, k + m) with m >= 0, n >= 0 and 0 <= k <= n. 3
 1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 2, 1, 0, 1, 10, 3, 7, 3, 0, 1, 15, 4, 25, 12, 2, 0, 1, 21, 5, 65, 30, 6, 1, 0, 1, 28, 6, 140, 60, 12, 15, 7, 0, 1, 36, 7, 266, 105, 20, 90, 50, 12, 0, 1, 45, 8, 462, 168, 30, 350, 195, 60, 6, 0, 1, 55, 9, 750, 252, 42, 1050, 560, 180, 24, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS Eric Weisstein's World of Mathematics, NĂ¸rlund Polynomial. FORMULA T(m,n,k) = (k + m)*T(m, n-1, k) + k*T(m, n-1, k-1) + T(m-1, n, k) with boundary conditions T(0, n, k) = 0^n; T(m, n, k) = 0 if k<0 or k>n; and T(m, 0, k) = 0^k. T(m,n,k) = Pochhammer(m, k)*binomial(n + m, k + m)*NorlundPolynomial(n - k, -k - m). EXAMPLE Array starts: m\j| 0   1  2     3       4       5       6       7       8       9      10 ---|---------------------------------------------------------------------------- m=0| 1,  0, 0,    0,      0,      0,      0,      0,      0,      0,      0, ... m=1| 1,  1, 1,    1,      3,      2,      1,      7,     12,      6,      1, ... m=2| 1,  3, 2,    7,     12,      6,     15,     50,     60,     24,     31, ... m=3| 1,  6, 3,   25,     30,     12,     90,    195,    180,     60,    301, ... m=4| 1, 10, 4,   65,     60,     20,    350,    560,    420,    120,   1701, ... m=5| 1, 15, 5,  140,    105,     30,   1050,   1330,    840,    210,   6951, ... m=6| 1, 21, 6,  266,    168,     42,   2646,   2772,   1512,    336,  22827, ... m=7| 1, 28, 7,  462,    252,     56,   5880,   5250,   2520,    504,  63987, ... m=8| 1, 36, 8,  750,    360,     72,  11880,   9240,   3960,    720, 159027, ... m=9| 1, 45, 9, 1155,    495,     90,  22275,  15345,   5940,    990, 359502, ... . m\j| ...      11      12      13      14 ---|----------------------------------------- m=0| ...,      0,      0,      0,      0, ... [A000007] m=1| ...,     15,     50,     60,     24, ... [A028246] m=2| ...,    180,    390,    360,    120, ... [A053440] m=3| ...,   1050,   1680,   1260,    360, ... [A294032] m=4| ...,   4200,   5320,   3360,    840, ... m=5| ...,  13230,  13860,   7560,   1680, ... m=6| ...,  35280,  31500,  15120,   3024, ... m=7| ...,  83160,  64680,  27720,   5040, ... m=8| ..., 178200, 122760,  47520,   7920, ... m=9| ..., 353925, 218790,  77220,  11880, ...          A293476,A293608,A293615,A052762, ... . The parameter m runs over the triangles and j indexes the triangles by reading them by rows. Let T(m, n) denote the row [T(m, n, k) for 0 <= k <= n] and T(m) denote the triangle [T(m, n) for n >= 0]. Then for instance T(2) is the triangle A053440, T(3, 2) is row 2 of A294032 (which is [25, 30, 12]) and T(3, 2, 1) = 30. . Remark: To adapt the sequences A028246 and A053440 to our enumeration use the exponential generating functions exp(x)/(1 - y*(exp(x) - 1)) and exp(x)*(2*exp(x) - y*exp(2*x) + 2*y*exp(x) - 1 - y)/(1 - y*(exp(x) - 1))^2 instead of those indicated in their respective entries. MAPLE A293617 := proc(m, n, k) option remember: if m = 0 then 0^n elif k < 0 or k > n then 0 elif n = 0 then 1 else (k+m)*A293617(m, n-1, k) + k*A293617(m, n-1, k-1) + A293617(m-1, n, k) fi end: for m in [\$0..4] do for n in [\$0..6] do print(seq(A293617(m, n, k), k=0..n)) od od; # Sample uses: A027480 := n -> A293617(n, 2, 1): A293608 := n -> A293617(n, 4, 2): # Flatten: a := proc(n) local w; w := proc(k) local t, s; t := 1; s := 1; while t <= k do s := s + 1; t := t + s od; [s - 1, s - t + k] end: seq(A293617(n - k, w(k)[1], w(k)[2]), k=0..n) end: seq(a(n), n = 0..11); MATHEMATICA T[m_, n_, k_] := Pochhammer[m, k] StirlingS2[n + m, k + m]; For[m = 0, m < 7, m++, Print[Table[T[m, n, k], {n, 0, 6}, {k, 0, n}]]] A293617Row[m_, n_] := Table[T[m, n, k], {k, 0, n}]; (* Sample use: *) A293926Row[n_] := A293617Row[n, n]; CROSSREFS A000217(n) = T(n, 1, 0), A001296(n) = T(n, 2, 0), A027480(n) = T(n, 2, 1), A002378(n) = T(n, 2, 2), A001297(n) = T(n, 3, 0), A293475(n) = T(n, 3, 1), A033486(n) = T(n, 3, 2), A007531(n) = T(n, 3, 3), A001298(n) = T(n, 4, 0), A293476(n) = T(n, 4, 1), A293608(n) = T(n, 4, 2), A293615(n) = T(n, 4, 3), A052762(n) = T(n, 4, 4), A052787(n) = T(n, 5, 5), A000225(n) = T(1, n, 1), A028243(n) = T(1, n, 2), A028244(n) = T(1, n, 3), A028245(n) = T(1, n, 4), A032180(n) = T(1, n, 5), A228909(n) = T(1, n, 6), A228910(n) = T(1, n, 7), A000225(n) = T(2, n, 0), A007820(n) = T(n, n, 0). A028246(n,k) = T(1, n, k), A053440(n,k) = T(2, n, k), A294032(n,k) = T(3, n, k), A293926(n,k) = T(n, n, k), A124320(n,k) = T(n, k, k), A156991(n,k) = T(k, n, n). Cf. A293616. Sequence in context: A323222 A125104 A098157 * A165253 A317659 A059045 Adjacent sequences:  A293614 A293615 A293616 * A293618 A293619 A293620 KEYWORD nonn,tabl AUTHOR Peter Luschny, Oct 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 11:29 EDT 2020. Contains 337367 sequences. (Running on oeis4.)