login
A125104
Triangle read by rows counting compositions (ordered partitions) by minimal part size.
1
1, 1, 1, 1, 0, 3, 1, 0, 1, 6, 1, 0, 0, 2, 13, 1, 0, 0, 1, 3, 27, 1, 0, 0, 0, 2, 5, 56, 1, 0, 0, 0, 1, 2, 9, 115, 1, 0, 0, 0, 0, 2, 3, 15, 235, 1, 0, 0, 0, 0, 1, 2, 5, 25, 478, 1, 0, 0, 0, 0, 0, 2, 2, 8, 42, 969, 1, 0, 0, 0, 0, 0, 1, 2, 3, 12, 70, 1959, 1, 0, 0, 0, 0, 0, 0, 2, 2, 5, 18, 116, 3952, 1, 0, 0, 0, 0, 0, 0, 1, 2, 2, 8, 27, 192, 7959, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 11, 41, 317, 16007
OFFSET
0,6
COMMENTS
The diagonals of this array can be generated from Table A099238 as follows: A000079 - A000045 = [1, 2, 4, 8, 16, 32, ...] - [0, 1, 1, 2, 3, 5, ...] = [1, 1, 3, 6, 13, 27, ...] = A099036, A000045 - A000930, A000930 - A003269, A003269 - A003520, etc.
EXAMPLE
Row 4 of the array is (1, 0, 1, 6) because there are six compositions with minimum part of size one: 1111, 31, 13, 211, 121, 112; one of size two: 22; none of size three; and 1 of size four: 4.
Triangle (after 45-degree counterclockwise rotation) begins:
1 1 3 6 13 27 56 115 235 478 969 1959 3952 7959
.1 0 1 2 3 5 9 15 25 42 70 116 192
..1 0 0 1 2 2 3 5 8 12 18 27
...1 0 0 0 1 2 2 2 3 5 8
....1 0 0 0 0 1 2 2 2 2
.....1 0 0 0 0 0 1 2 2
......1 0 0 0 0 0 0 1
.......1 0 0 0 0 0 0
........1 0 0 0 0 0
KEYWORD
easy,nonn,tabl
AUTHOR
Alford Arnold, Nov 28 2006, corrected Nov 28 2006
EXTENSIONS
Edited by N. J. A. Sloane, Dec 21 2006
More terms from Vladeta Jovovic, Jul 10 2007
STATUS
approved