login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125101
T(n,k) = k*binomial(n-1,k-1) + Fibonacci(k)*binomial(n-1,k) (1 <= k <= n).
0
1, 2, 2, 3, 5, 3, 4, 9, 11, 4, 5, 14, 26, 19, 5, 6, 20, 50, 55, 30, 6, 7, 27, 85, 125, 105, 44, 7, 8, 35, 133, 245, 280, 182, 62, 8, 9, 44, 196, 434, 630, 560, 300, 85, 9, 10, 54, 276, 714, 1260, 1428, 1056, 477, 115, 10, 11, 65, 375, 1110, 2310, 3192, 3030, 1905, 745, 155
OFFSET
1,2
COMMENTS
Row sums are s(n) = 1, 4, 11, 28, 69, 167, 400, ...
Binomial transform of the bidiagonal matrix with (1,2,3...) in the main diagonal and the Fibonacci numbers (1,1,2,3,5,8,...) in the subdiagonal.
FORMULA
T(n,2) = A000096(n-1).
T(n,3) = A051925(n-1).
T(n,4) = A215862(n-3). - R. J. Mathar, Aug 10 2013
Row sums s(n) = 7*s(n-1) -17*s(n-2) +16*s(n-3) -4*s(n-4) with s(n) = A001787(n+1)/4 +A001906(n-1). - R. J. Mathar, Aug 10 2013
EXAMPLE
First few rows of the triangle:
1;
2, 2;
3, 5, 3;
4, 9, 11, 4;
5, 14, 26, 19, 5;
6, 20, 50, 55, 30, 6;
7, 27, 85, 125, 105, 44, 7;
8, 35, 133, 245, 280, 182, 62, 8;
...
MAPLE
with(combinat): T:=(n, k)->k*binomial(n-1, k-1)+fibonacci(k)*binomial(n-1, k): for n from 1 to 12 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
Flatten[Table[k Binomial[n-1, k-1]+Fibonacci[k]Binomial[n-1, k], {n, 15}, {k, n}]] (* Harvey P. Dale, Nov 03 2014 *)
CROSSREFS
Sequence in context: A196957 A124727 A210565 * A208519 A336725 A210232
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 20 2006
EXTENSIONS
Edited by N. J. A. Sloane, Nov 29 2006
STATUS
approved