OFFSET
0,2
COMMENTS
Binomial transform of the bidiagonal matrix with the Fibonacci numbers (1, 1, 2, 3, 5, 8, ...) in the main diagonal and (1, 2, 3, ...) in the subdiagonal.
Sum of terms in row n = n*2^(n-1) + Fibonacci(2n+1) (A081663).
EXAMPLE
First few rows of the triangle:
1;
2, 1;
3, 4, 2;
4, 9, 9, 3;
5, 16, 24, 16, 5;
6, 25, 50, 50, 30, 8;
7, 36, 90, 120, 105, 54, 13;
8, 49, 147, 245, 280, 210, 98, 21;
...
MAPLE
with(combinat): T:=(n, k)->binomial(n, k)*fibonacci(k+1)+(k+1)*binomial(n, k+1): for n from 0 to 11 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 20 2006
EXTENSIONS
Edited by N. J. A. Sloane, Nov 29 2006
STATUS
approved