login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081659
a(n) = n + Fibonacci(n+1).
10
1, 2, 4, 6, 9, 13, 19, 28, 42, 64, 99, 155, 245, 390, 624, 1002, 1613, 2601, 4199, 6784, 10966, 17732, 28679, 46391, 75049, 121418, 196444, 317838, 514257, 832069, 1346299, 2178340, 3524610, 5702920, 9227499, 14930387, 24157853, 39088206
OFFSET
0,2
COMMENTS
Row sums of triangle A135222. - Gary W. Adamson, Nov 23 2007
a(n) is the F(n+1)-th highest positive integer not equal to any a(k), 1 <= k <= n-1, where F(n) = Fibonacci numbers = A000045(n). - Jaroslav Krizek, Oct 28 2009
FORMULA
a(n) = (sqrt(5)*(1+sqrt(5))^(n+1) - sqrt(5)*(1-sqrt(5))^(n+1))/(10*2^n) + n.
G.f.: (1-x-x^3)/((1-x-x^2)*(1-x)^2).
From Jaroslav Krizek, Oct 28 2009: (Start)
a(0) = 1, a(n) = a(n-1) + A000045(n-1) + 1 for n >= 1.
a(0) = 1, a(n) = a(n-1) + A000045(n+1) - A000045(n) + 1 for n >= 1.
a(0) = 1, a(1) = 2, a(2) = 4, a(n) = a(n-1) + a(n-2) - (n-3) n >= 3. (End)
E.g.f.: (1/10)*exp(-2*x/(1+sqrt(5)))*(5 - sqrt(5) + (5 + sqrt(5))*exp(sqrt(5)*x) + 10*exp((1/2)*(1+sqrt(5))*x)*x). - Stefano Spezia, Nov 20 2019
MAPLE
with(combinat); seq(n + fibonacci(n+1), n=0..40); # G. C. Greubel, Nov 20 2019
MATHEMATICA
Table[ Fibonacci[n+1]+n, {n, 0, 38}] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2011 *)
CoefficientList[Series[(x^3+x-1)/((x-1)^2 (x^2+x-1)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 10 2013 *)
LinearRecurrence[{3, -2, -1, 1}, {1, 2, 4, 6}, 40] (* Harvey P. Dale, Mar 02 2016 *)
PROG
(MuPAD) numlib::fibonacci(n)+n-1 $ n = 1..48; // Zerinvary Lajos, May 08 2008
(Magma) [n+Fibonacci(n+1): n in [0..40]]; // Vincenzo Librandi, Aug 10 2013
(PARI) a(n)=n+fibonacci(n) \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [n+fibonacci(n+1) for n in range(40)] # G. C. Greubel, Feb 12 2019
(GAP) List([0..40], n-> n + Fibonacci(n+1) ); # G. C. Greubel, Nov 20 2019
CROSSREFS
Cf. A000045, A001611 (first differences), A002062, A135222.
Sequence in context: A376876 A039900 A039902 * A143586 A363457 A344677
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 26 2003
STATUS
approved