login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039900
Number of partitions satisfying 0 < cn(0,5) + cn(1,5) + cn(4,5).
29
0, 1, 1, 2, 4, 6, 9, 13, 19, 27, 38, 52, 71, 95, 127, 167, 220, 285, 370, 474, 607, 770, 976, 1226, 1540, 1920, 2391, 2960, 3660, 4501, 5529, 6760, 8254, 10038, 12190, 14750, 17825, 21470, 25825, 30975, 37101, 44322, 52879, 62937, 74811, 88733, 105110, 124261
OFFSET
0,4
COMMENTS
For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: o < 0 + 1 + 4 (OMZAAp).
Number of partitions of n such that (greatest part) >= (multiplicity of greatest part), for n >= 1. For example, a(6) counts these 9 partitions: 6, 51, 42, 411, 33, 321, 3111, 22111, 21111. See the Mathematica program at A240057 for the sequence as a count of these partitions, along with counts of related partitions. - Clark Kimberling, Apr 02 2014
The Heinz numbers of these integer partitions are given by A324561. - Gus Wiseman, Mar 09 2019
From Gus Wiseman, Mar 09 2019: (Start)
Also the number of integer partitions of n whose minimum part is less than or equal to the number of parts. The Heinz numbers of these integer partitions are given by A324560. For example, the a(1) = 1 through a(7) = 13 integer partitions are:
(1) (11) (21) (22) (32) (42) (52)
(111) (31) (41) (51) (61)
(211) (221) (222) (322)
(1111) (311) (321) (331)
(2111) (411) (421)
(11111) (2211) (511)
(3111) (2221)
(21111) (3211)
(111111) (4111)
(22111)
(31111)
(211111)
(1111111)
(End)
LINKS
FORMULA
G.f.: Sum_{k>=0} x^k * (1-x^(k^2)) / Product_{j=1..k} (1-x^j). - Seiichi Manyama, Jan 13 2022
a(n) = A000041(n) - A003106(n). - Vaclav Kotesovec, Oct 20 2024
EXAMPLE
From Gus Wiseman, Mar 09 2019: (Start)
The a(1) = 1 through a(7) = 13 integer partitions with at least one part equal to 0, 1, or 4 modulo 5:
(1) (11) (21) (4) (5) (6) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (321) (331)
(2111) (411) (421)
(11111) (2211) (511)
(3111) (2221)
(21111) (3211)
(111111) (4111)
(22111)
(31111)
(211111)
(1111111)
(End)
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, t,
`if`(i<1, 0, b(n, i-1, t)+ `if`(i>n, 0, b(n-i, i,
`if`(irem(i, 5) in {2, 3}, t, 1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50); # Alois P. Heinz, Apr 03 2014
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; Min[p] <= Length[p]], {n, 40}] (* Clark Kimberling, Feb 13 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[n==0, t, If[i<1, 0, b[n, i-1, t] + If[i > n, 0, b[n-i, i, If[MemberQ[{2, 3}, Mod[i, 5]], t, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)
PROG
(PARI) my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, x^k*(1-x^k^2)/prod(j=1, k, 1-x^j)))) \\ Seiichi Manyama, Jan 13 2022
KEYWORD
nonn
STATUS
approved