OFFSET
0,2
COMMENTS
Row sums = A094374: (1, 3, 8, 21, 56, ...).
Binomial transform of the infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (1,2,4,8,...) in the subdiagonal.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
EXAMPLE
First few rows of the triangle are
1;
2, 1;
3, 4, 1;
4, 9, 7, 1;
5, 16, 22, 12, 1;
6, 25, 50, 50, 21, 1;
7, 36, 95, 140, 111, 38, 1;
...
MAPLE
T:=(n, k)->binomial(n, k)+2^k*binomial(n, k+1): for n from 0 to 11 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
Table[Binomial[n, k]+2^k Binomial[n, k+1], {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Nov 30 2019 *)
PROG
(PARI) T(n, k) = binomial(n, k) + 2^k*binomial(n, k+1);
matrix(11, 11, n, k, T(n-1, k-1)) \\ Michel Marcus, Nov 09 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 20 2006
EXTENSIONS
Edited by N. J. A. Sloane, Nov 29 2006
STATUS
approved